i

SRR

\

LGY0E-CD

NAVAL POSTGRADUATE SCHOOL @
Monterey, California

~p257 606
AD \'\\\\\\'\ﬁ\g\\\\\‘&\\\\\\\\\&\\\\}\\\\\\\\x

THESIS

Turtle Graphics Implementation Using a
Graphical Dataflow Programming Approach

by

Robert S. Lovejoy
September 1992

Thesis Advisor:

C. Thomas Wu
Co-Advisor:

David A. Erickson

Approved for public release; distribution is unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

(o

REPORT DOCUM

ENTATION PAGE

I TErOR T SECURITY CLASSET
1a CATION UNCLASSIFIED
5 SECURITY CASSPCATON AUTHORTY

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

[2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. NONITORING ORGANIZATION REPORT NUMBER(S)

: a - O 3 7a. NAME OF MONITORING ORGANIZATION

Computer Science Dept. (it applicable) Naval Postgraduate School

Naval Postgraduate School 37

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

e UNDING/ NG 80. OFFICE SYMBOL | 9. i ™

ORGANIZATION (if applicable)
. ADDR fty, State, 10. SOURCE OF FUNDING NUMBERS

8c ESS (City, State, and ZIP Code) S UNPINERTRINESE WOTRORT—

ELEMENTNO. |NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
TURTLE GRAPHICS IMPLEMENTATION USING A GRAPHICAL DATAFLOW PROGRAMMING APPROACH
Lovejoy, Robert Steven

% 14. DATE OF REPORT (Year, Month, Day) | 15.
aster's 1992, September 194
16 SUPPLEMENTARY NOTATION T views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

12

7 13b.
CS1S FROM TO;

17. COSATI CODES

OBJECT ORIENTED PROGRAMMING, TURTLE GRAPHICS,

FIELD GROUP SUB-GROUP

VISUAL DATAFLOW PROGRAMMING

1
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis expands the concepts of object-oriented programming to implement a visual dataflow programming

language. The main thrust of this research is to develop a functional prototype language, based upon the Turtle Graph-
ics tool provided by LOGO programming language, for children to develop both their problem solving skills, as well
as their general programming skills.

The language developed for this thesis was implemented in the object-oriented, dataflow programming language
Prograph. The dataflow paradigm was emulated in order to provide a more intuitive, easy to learn programming en-
vironment for children to use. Additionally, Prograph was chosen because it provides the necessary base classes to
easily implement an interactive user interface, and it provides the necessary primitive operations for all graphics
drawing routines.

This thesis demonstrates a prototype for a potential visual programming language that can be used at all levels of
education to teach problem solving, higher-order thinking skills, mathematical concepts, and the fundamentals of
computer science.

{20 DISTRIBUTION/AVATCABILITY OF ABSTRACT
[} UNCLASSIFIED/UNLIMITED [7] SAME AS RPT. [J DTIC USERS
22b. TELEPHONE {include Area Code)

8‘ ”Zomas wu, B?op., Eomput%}LScience Dept, NPS (408) 646-2174

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

1

27, ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22c
u
——————————————

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Approved for public release; distribution is unlimited

Turtle Graphics Implementation Using a
Graphical Dataflow Programming Approach

by
Robert Steven Lovejoy
Lieutenant, United States Navy
B.S., Bradley University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1992

Author:)44’-){ IJZJ“— .)4[/

Robert Steven Lovejoy

Approved By:

C. Thomas Wu,/ esis Advisor

David A. Erickson, Co-Advisor

0 o W ogh

’ Robert’B. DcGhd:!, Chairman,
X —~Department of Computer Science

i

ABSTRACT

This thesis expands the concepts of object-oriented programming to implement
a visual dataflow programming language. The main thrust of this research is to
develop a functional prototype language, based upon the Turtle Graphics tool
provided by LOGO programming language, for children to develop both their
problem solving skills as well as their general programming skills.

The language developed for this thesis was implemented in the object-oriented,
dataflow programming language Prograph. The dataflow paradigm was emulated in
order to provide a more intuitive, easy to learn programming environment for
children to use. Additionally, Prograph was chosen because it provides the
necessary base classes to easily implement an interactive user interface and it
provides the necessary primitive operations for all graphics drawing routines

This thesis demonstrates a prototype for a potential visual programming
language that can be used at all levels of education to teach problem solving, higher-
order thinking skills, mathematical concepts, and the fundamentals of computer

science.

Acoession For
NTIS GRA&I I—Z—
DTIC TAB O

Unannnianeed O

I Juotificetton]

By
Districution/
Aqx tanility Toden

A avifer
JANE. 34 ! Cpecind

‘P\,\{ i

Table Of Contents

I. INTRODUCTION 1
II. SURVEY OF THE LITERATURE 3
A. OBJECT-ORIENTED PROGRAMMING..........ccceevmrrecreneecenerevenaencssnnes 3

1. Classes/Objects and Related Variables and Methodscccoeceeireeenne. 4

2. INhEMItANCEocoeeieeeiiecccinrieceencecenesaee s csse e ssasnasssaeenesesanssasosanassssnses 5

3. ENCapSUlation.........occeveeieciinrienrunnsenennssnncesssensncessassassssensassessersessasssssssses 7

4. PolymOTphiSIM.......ocvciiiiiiiciiiierenenencneseiestesnie s snnsnecsecseessessesssassessneses 8

B. TURTLE GRAPHICS PROGRAMMING LANGUAGEcccocveveune. 9

1. Turtle Graphics OTigiN........couvccnirniceneiccniniecnincnnennssesasesassesens 9

2. Overall Educational Benefit............cccooveiveiminrnnriccneeeeccccnreneseienie s 10

2. Case STUAIESoceeriiericriirinirrereeseeeeseeesne st e assssessssssesnsnsssssnssonss 10

b. Problem Solving SKills..........cccocurveenircinrnincinneencnceccssennsccsneeeseenaes 11

¢. Specific Curriculum Benefitsccceeveiieeecienreeneeerceceneeesesnsaeesaenne 12

3. The Languageccccireiiniiiuincinreeeeanessstennassssesassssassssasssssesssssesssesons 13

A, TUIE SPACE.....cccrireicietiiteenrccctenteee et s snee e s snse st esasesesssssanenns 13

b. MaKing Shapes..........cccoiieeeerrereircreccteceeesteensessenesessesesasesassssssnns 14

C. Making Procedures..........cceevecreerceenreeestennncannsnessecessessuesssesessessneses 14

d. Generalizing Procedurescccceevervvinencnnnncennieneniccnnnsinneeeneee 15

C. PROGRAPH: A Visual Dataflow Program Styleccccoceevvinienennnnne. 16

1. Visual Systems-Iconic Based...........ccceeveeeeneiencminenncinenceicccncienniies 17

B, ClaSSES...coieeneeirneniieientire et sse st e nesnes e s s e e sssesnsessesanses 17

D, ARIIDULES ...t ettt et s s e snnea e 18

C. MEthOUS ..ottt ctre s e e se e seaessssssnssbenane 19

2. Visual Systems-Dataflow Based..........ccccooeevviirciniicnnniiiinnncircccnnee. 20

a. Message Passing/Invoking a Method............ccooviviiininninicnennnnee. 22

b. Control SIUCIUTESccocvircerrerrrienrersteesesteessssseessessrsecsseessssssssans 23

III. DATAFLOW TURTLE GRAPHICS 28
A. LANGUAGE EVOLUTION..........ooiteieeeneeretevecree e v saeseesassnsneaas 28

B. WHY VISUAL PROGRAMMING. ...ttt seteenenne 29

iv

1. Dual Brain Theoryccooviimiiininninninninininnennieniisnsesscsseessenenns 29

. 2. A Need For a New Programming Stylecoevvmvenueninnennecsncnscennn. 30
C. WHY DATAFLOW PROGRAMMINGcccrrvimitinininecnrsnissnnnens 30

- 1. Executable versus Non-Executable Diagrams...........cccceoevceivencvrncnne 31
2. Dataflow FUnCtionalityccccooeviciicniccninisinensisssieeseesenssssscsnessnsnes 31

D. ICONIC LANGUAGES.........ccitrieceniineneeeneesetaesessncssssesssssssasssssnsssses 32

1. IconiC GUIdElINEScoeevueecrceirniisininnetiiene ettt et ssesans 32

E. TURTLE GRAPHICS DESIGN AND IMPLEMENTATION................... 33

1. Developing Turtle Class/Objects and Methodscccoeneciencnincnennnee. 34

a. Class Hierarchyccccoceeeveremmienrcnnicsisnicssnessissensssecsssessessesneonns 34

b. Turtle/pTurtle Class Definitions.............ccoouvereinrencnisinncncsenencuenene. 35

¢. User Interface Design and Implementation: First Phase.................. 36

2. Integration of Turtle Code and Dataflow Programming Code............... 39

a. Class Hierarchycccccovceeiinnnncnnntinnnninneconiesnseeneensssessssssesesens 39

b. DFObject and Descendents............cccoveeinruceucesecnninaeeas teeeeneeeneennes 40

¢. User Interface Design and Implementation: Second Phase 4]

d. Program Objects: Icon-Description and Functionality 44

IV. PROBLEM SOLVING WITH DATAFLOW TURTLE GRAPHICS48

A. GENERAL DISCUSSION.......cccoctrrininecinincensssenisssssississssesessessessesens 48

B. PROBLEM STATEMENTcccccviinitiininnntnsenntcenssssensesssesssssonnens 48

C. DEVELOPING A SOLUTIONccoeoitreecnrenensnneesesesiesssssesnenssssesensnens 48

1. DFTG’s Object-Oriented Approach to Problem Solving....................... 48

2. “Man-Project” Problem Reduction...........ccccoeiniiineninnicnnnninnncensnnnne. 49

2. Create Turtlescooiieeecneeceisciecccecenenii e ss e 49

b. Creating the Head............cccoccemininirniiiiincccitcc st 49

C. Create aFaCecueeeeeceeecetiiectvnccciiesiescsee i ssre s e 50

d. Create a body.......ccoceeierrennrceierinienieestcines s 50

. €. Create @ DOWHE......cc.ccoeecerrreceirrnnentnetetntisic st st ss s nnesseses 51
f. Create 1egs.....couveeeeiriececenrincnicicieccc st sree s s 53

8. Create aIms........cocceiieiccnieireecccneniecreneseessesessetssnesssssssnsssassssansesses 54

h. Final Code Encapsulationcccceveevercceerenceecreenneneecseesseceesennns 54

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
RESEARCH 58
A. SUMMARYicrrertccntinnneenaessessaaesssssesssssessesssonses soseessssessessnsneans 58
B. CONCLUSIONSooiiiineninceesrensssansssssnesssssussssssessssssasesesasessssessssases 59
C. SUGGESTIONS FOR FUTURE RESEARCHcccoceeeinceircereceveecnn 59
1. Completion of “user-defined Turtle command” functionality 60
2. Completion of “user-help” functionalityccccceccereeverneesereneececanernne. 60
3. Expand language cONtrol CONSIIUCLScccceeereeereeeruereessseesansesecsnesnnees 60
4. Fully implement Error detection/correction capabilities 60
5. Incorporate a programming pallet of available commands 61
6. Implement additional Turtle functionalitycccceeveeecerrvvecsvrerccrrenenneen 61
7. Perform statistical studies of user effectiveness..........cccoccertrveecereenncne. 61
APPENDIX A - USER COMMAND/METHOD DEFINITIONSccccceeeeee. 62
APPENDIX B - NEW TURTLE GRAPHICS - SOURCE CODE 66
LIST OF REFERENCES 180
BIBLIOGRAPHY 182
INITIAL DISTRIBUTION LIST 183

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13

List of Figures

Superclass/Subclass Inheritance Hierarchyccccocevcueevuunnnen...... 6
Ship EXample ...ttt cnennenns 7
Turtle Graphics commands for Square-processccocvvuesrrvennnae 14
Graphical Class Hierarchycccooeeivnncvcinnnnicinccininiincnninenne. 18
Application Attributes/Methods Windows...........ccoccevniiriencnrnencnne. 19
Case Window for Window/Close.............cccoeuune.. eetevesesesnaeseneanaas 21
Method Calling FOrmatsc.cccueeceeeiiseceneneneenenerseeesssesessasossnens 22
Case on Fail Control Structure.........c.cccvvniceeneninnecnesesncsessenanen, 25
Case Success Control StrUCHUTecccceceiriinensinneescniisencnessesenn. 26
Synchro Control StruCturecceeeerueereeseercennetnetinneiensencsisasenas 26
Class Hierarchycoccceerrruerececueccinsnecseesnessseecsesssssssensssessesessnans 34
Turtle Class Definitioncccccovceveveevvsvsmsursvrirrrseseiisrecesenaeens 35
pTurtle Class Definition.............ccccceevieeenserccinnicsnccencssensecsecsssaenees 36
Graphics Display Windowcccccovnrveiirinnncinnnnininseneiiecnne. 37
Turtles Menu OPtion.......c.cccueeeieeeceeeneirieneerenessesssiessessessasstsssannes 38
Turtle Attribute Inteiface Windowcccccovvevvicnccinninccncnnnnnn. 39
Dataflow Turtle Graphics Class Hierarchyc.cocevceviecvininnneee. 40
Dataflow Programming Windowccccocuevninninininnincneirecnnan. 42
Revised Turtle Display Windowccccoceimeenccnicnininnnnccnninnecae. 43
Turtle Graphics Help Windowccvnvivvinnniinnicnicninenncaen 4
Programming Object ICONScccoiniriviniiinninniiiiiciieieeenen, 45
Stored Program Code for Star............ccoceeeeeieeceeeicecrnnininiciiieenns 46
User-Defined Operator Code...........ccceveremrvrsirsrsvecnreriniciireenn 47

vii

Figure 4.1 Head SOIULON........ccoiieiririncicriniic et ccsatssise s eais 50
Figure 4.2 Face SOIUtON..........ccceeomiiireeeeiirtenisnetee s cecaesanesesssssae s esssssesnasnenne 51
Figure 4.3 Head/Face INtegrationcccoveveeuicmricnnensecnsecsninnsecsecsesssesenns 52
Figure 4.4 Body SOIUHONcocooeciiirieeeencnnininsin it stcsssssesesssssesssessessessens 52
Figure 4.5 Bowtie SOIUtON........cccctvurreiniinintinniinicciientcecmsr s essessnanes 53
Figure 4.6 Integrated Body/Bowtie SOIUtiON..............cccouvceevevrreccrvesunsurrernnrnnnss 53
Figure 4.7 Head/Body Integrated Solution............cccocuveecemininiiscnrennnninecinnne 54
Figure 4.8 Legs SOIUtioNcccovimiiininiienininiininicniicncestecereas e aesssseas 55
Figure 4.9 Head/Body/Legs INtEgrationccoevueeeeerrecuisenscsscsnnniiscssessesnenenes 55
Figure 4.10 Arms SOIUtioNccccccvirimemnsinininciininencct e cteenseessee e as 56
Figure 4.11 Complete INtegration.............ccccovivecirnrcenrmsunnninniennensensscnsesssesnens. 56
Figure 4.12 Final Man Encapsulationcccececcvinininniniinninineniseeseenene. 57

viii

ACKNOWLEDGEMENTS

This thesis was made possible through the efforts of several people. First and
foremost, thanks to my advisors Dr. Wu and Dr. Erickson. Had it not been for their
challenging questions and patient guidance, the completion of this research would
have not been possible.

Special thanks goes to John Daley, LCDR, USN, a military instructor at Naval
Postgraduate School. Much valuable research information was gained with his
guidance to related Turtle Graphics material.

Lastly, for the most important people in my life, my family, without whom I
certainly would not be where I am today. Thanks for all the encomaéement, love,
and support, especially from my wife Vikki. I only wish that I had been able to spend
more time with you and the kids. And finally a special thank you to my children,
Michael, Brittany, and Andrew for making me smile even when my mind was pre-

occupied.

I. INTRODUCTION

The purpose of this thesis is to expand upon the graphics portion of LOGO!
programming language. Much research has been conducted in the area of Turtle
Graphics languages, however, they are text-based implementations requiring a
relatively high degree of sophistication with text and language constructs [CIL86].
The intent of this research is to design and implement LOGO's turtle metaphor into
a Turtle Graphics Dataflow Programming Language. The major areas of concern in
this thesis are Object-Oriented Program Design, Turtle Graphics Programming
Language, and Visual Dataflow Programming.

Dataflow Turtle Graphics (DFTG) has been developed as a language for
children to develop their problem solving skills as well as basic programming
concepts. It is a tool to teach the process of learning and thinking. DFTG is a visual

programming language which supports the execution of dataflow programs. It was

implemented with an object oriented design using Prograph? [TGS88a, TGS88b,
TGS91], an object-oriented programming language (OOPL) available on the Apple

Macintosh®. This language was chosen because it provided the necessary base
classes for interface design, as well as the primitive operations for all graphics
drawing functions. Prograph also handles list processing and manipulation of non-
conventional objzcts (i.e., pictures, sounds, etc.) very easily, which is important to
the languages’ continued expansion.

The main thrust of this thesis was to implement a prototype language, DFTG,

by combining the concepts of Turtle Graphics Programming with Visual Dataflow

1. Armedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, Ca.

2. Prograph is a trademark of The Gunakara Sun Systems, Ltd.
3. Apple and Macintosh are registered trademarks of Apple Computers, Inc.

Programming. The essential theme is to remove the short comings of text-based
programming, and to provide a more intuitive, easy-to-learn environment for
dataflow programming.

The remainder of this thesis is organized as follows. Chapter Il is a survey of
the literature that forms the background for this research. It lays the groundwork for
future discussion in this thesis, and provides an overview of the main topics of this
thesis: Dataflow Programming, Turtle Graphics, and Object-Oriented Program
Design. Chapter III presents a detailed description of the design and implementation
of Dataflow Turtle Graphics. Chapter IV provides a step-by-step dataflow turtle
graphics solution for a particular programming project. Chapter V provides a
summary, conclusions, and suggestions for future research. Appendix A provides
the definitions for all predefined user commands. Appendix B provides the source

code for the implementation of this thesis.

II. SURVEY OF THE LITERATURE

This chapter deals with three major topics: Object-Oriented Programming
(OOF), Visual Dataflow Progiamming Languages, and Turtle Graphics
Programming Language. Basic terminology and concepts are discussed in this
chapter. Prior knowledge of these areas is not required for understanding the intent
of the research. This chapter is intended to serve as an introduction to these three

topics, laying the groundwork for the rest of this thesis.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a relatively new area of programming whose
origin has been attributed to the programming languages Simula and Smalltalk
[Booc91]. Although OOP seems to be on the rise in programming and program de-
sign today, there is clearly no single standard to abide by in order to be labeled an
object oriented language. Clearly, the motivation for all such languages is to provide
faster development, reliable and quality products, and easier maintenance and exten-
sion.

Object oriented programming languages provide four main features to achieve
their programming goals: abstraction, encapsulation, inheritance, and polymor-
phism. Abstraction supports code reusability, shareability, and allows for integra-
tion. Encapsulation supports code reliability, extensibility, and also allows for inte-
gration. Inheritance supports code reusability, shareability, and extensibility. Lastly,
polymorphism supports code extensibility, and shareability.

Creating complex applications using an object-oriented programming language
(OOPL) can be simpler than designing the same program using a more conventional
procedural language. This is because OO design more closely mirrors the real world

entities being modeled. Additionally, the full benefit of OOP can only be realized if

encapsulation is maximized during the design process. As program ccmplexity in-
creases, so to does the benefits of an object-oriented design. The most effective tool
for dealing with this complexity is abstraction. The most common form of abstrac-
tion by which complexity is managed is encapsulation.

The following are generally considered to be the fundamental characteristics of
all object-oriented programming languages: class/object and associated variables
and methods, inheritance, and polymorphism. The very basics of each of these con-

cepts follows:

1. Classes/Objects and Related Variables and Methods

A class simply defines a mold or template from which all objects or
instances are cast. It specifies a particular set of characteristics used for defining
objects of that class or, more formally, “a set of objects that share a common
structure and a common behavior” [Booc91; page 93]. Once a class is defined it does
not change. In object-oriented programming an ebject is an abstraction of a real-
world entity. They are specific instances of a class having their own set of self-
contained variables and behaviors by the use of methods. Each instance of a class
can have a unique set of values assigned to its variables or attributes, which may or
may not change throughout the execution of the program. Objects are intended to
encapsulate both data and behavior.

Consider the following example of class/object. Declare Ship as the class
or template of the objects desired. The class description serves as an abstract
description of related objects and how they interact with each other and the outside
world. As stated, it is helpful to think of a class as the general description of a real-
world entity. This particular class will describe some of the common characteristics
of all ships in general. A specific Ship, such as USS JARRETT, is an object

(instance) of this class. All objects of class Ship share the same structure and

behavioral aspects. It is this basic structure and behavior aspects that defines the
class. All instances of the class Ship will have its own set of instance variables. Each
individual ship will have values for these instance variables specific to that ship.
Furthermore, instance variables share only their name with other instances of that
class. Their values are independent of each other. Class variables, on the other hand,
remain identical for all instances of that class, in name and value.

A Method is a procedure or function associated to the instance of a class
that defines their behavior. Methods are invoked by passing messages to objects. The
object will respond appropriately if there exists a method, of the same name, within
its own set of methods. This set of methods defines the objects behaviors. Methods
are generally the only means for other objects to access the variables of a specific
instance. Methods are also broken into at least two groups, instance or object and
class methods. In Ship class, create_ship is an example of a class method to be used
when adding a new ship is required. An instance method may be get_ship_type, and

would be directed at a specific instance of a class.

2. Inheritance

Inheritance is a relationship among classes, wherein one class shares the
structure or behavior defined in one (single inheritance) or more (multiple
inheritance) other classes. Inheritance defines a “kind of”” hierarchy among classes
in which a subclass inherits from one or more superclasses; a subclass typically
augments or redefines the existing structure and behavior of its superclasses
[Booc91]. Traditional procedural languages, such as Ada, do not support this object-
oriented feature. Inheritance is a means for programmers to construct reusable
objects so they can produce programs in a relatively short time through code
sharing. New classes can be easily defined based on existing classes. The new class

is referred to as a subclass of the existing superclass. Figure 2.1 represents a general

class hierarchy. Classes Y and Z represent subclasses of Class X with arrows
indicating the direction of inheritance. Class X may also be referred to as the
superclass of classes Y and Z. Y and Z inherits all of the attributes and methods of
Class X. Additionally, subclasses may add more variables and methods as required
to define that class. Subclass method names may or amy not be unique. The effect
of using the same method name for a subclass will simply overshadow or change the
behavior of messages sent to instances of this class. All messages received by an
object will first check the methods of that class for a match and will proceed up the

inheritance chain until a match is found.

Figure 2.1 Superclass/Subclass Inheritance Hierarchy

There are two types of inheritance, single inheritance and multiple
inheritance. Single inheritance is defined as a class that can have only one
superclass. Multiple inheritance is defined as a class which inherits form more than
one superclasses. The specific considerations of single vs. multiple inheritance will
not be discussed in this research.

Figure 2.2 shows how a typical class hierarchy might appear for our Ship
class. Ship would be considered the superclass of Supply, Combatant, Auxiliary,
ect. Ship might have the attributes name, hull, homeport, draft, ect. Each of these
attributes are common in all ship types and should be defined in the class template.

The subclasses would each inherit all of the superclass attributes and methods, but
would likely require some augmenting to satisfy specific needs of each type of ship.

Atributes:a, b
Ship
(Methods:w)
Attributes:d
Supply)
Methods:w

Figure 2.2 Ship Example

Attributes:c
Combatant
Methods:x

In the Ship example, objects of all subclasses would inherit attributes a and
b from Ship class, as well as the behavior to respond to method w. Each subclass has
also augmented its’ attribute list with its’ own specific attributes. Additionally,
subclass Supply has overshadowed the superclass method, w, thereby changing the

response behavior if it should receive a message w.

3. Encapsulation

Encapsulation is a means of storing an objects attributes and methods in a
kind of black box. It can be defined as “the process of hiding all of the details of an
object that do not contribute to its essential characteristics” [Booc91; page 46]. It is
commonly referred to as information hiding, and is the most effective means of
managing the complexity of a program. Programming in an object-oriented
language, however, does not ensure that the complexity of an application will be
well encapsulated. Applying good programming techniques can improve

encapsulation, however the full benefit of object-oriented programming can only be

realized if encapsulation is a main goal during the design process. In OOP, a
properly encapsulated program will provide a more extendable, easily modifiable,
and integratable application. The black box approach ensures that the user does not
need to know the internal details about how a specific method works, or what
attributes the object has. The user needs only to be aware of the name of the message
to be passed, and what will be returned by the object.

Encapsulation provides the means by which a developer can have several
teams working on different object specifications, to be tested separately for
comrectness, and then integrated together for the final product. The modularity
concept of producing code was essential for developing the final Dataflow Turtle
Graphics Language. It also allows for the code to be improved/modified without

affecting how end users access the object.

4. Polymorphism

Polymorphism along with inheritance form the very basis of object-
oriented philosophy. Polymorphism is a phenomenon that occurs when the same
message is sent to different objects. Each object responds with a method appropriate
to its class.

Polymorphism allows programmers to add methods with the same name to
classes that share some commonality and therefore use the same name to denote the
specific function. Consider a graphics application in which a window is to drawn
with various different objects. Appropriate responses would result with the same
Draw message being sent to each object individually.

Polymorphism, used correctly, does away with elaborate control structures
to handle all possible scenarios. Without polymorphism, the Draw method example
would have to modified each time a new kind of object was added. With

polymorphism, however, no changes are required to be made to the existing code.

Thus, polymorphism, facilitates code extensibility and modifiability in less time and

with less errors.

B. TURTLE GRAPHICS PROGRAMMING LANGUAGE

Turtle Graphics can be thought of as a programming language for learning. It is
a language that encourages students to explore, learn, and think. It provides all the
tools required to create programs of varying degree of difficulty. Through
immediate, visual, and non-judgmental feedback, the student feels in complete
control of the graphics program, and thus is motivated to continue on the problem-
solving journey. In a creative and helpful environment, Turtle Graphics turns
mistakes into opportunities for exploration and new creation. In all, Turtle Graphics
helps students with personal development, attitudes toward learning, depih of

understanding, and other long-term benefits.

1. Turtle Graphics Origin

Professor Seymour Papert first introduced Turtle Graphics with the
development of the programming language LOGO at MIT in 1967. The initial intent
was to develope a computer language that would be both suitable for children, yet
powerful enough for the professional programmer. The name LOGO was chosen to
suggest the fact that it is primarily symbolic and only secondary quantitative
[Pape80,pg210]. The Turtle is an example of a constructed computational “object-
to-think-with.” The principal role of the Turtle is to serve as a model for other
objects, yet to be invented. The Turtle is simply a computer-controlled cybernetic
animal. It exists within the cognitive LOGO environment, LOGO being the
computer language in which communication with the Turtle takes place. The Turtle
serves no other purpose than of being good to program and good to think with. It is
generally assumed that the more powerful a programming language is, the harder it

is to learn. LOGO is based on the concept of easier learning, by relating a turtle to

an object used to think with. Turtle Graphics provides a straightforward meaning to
attach to each individual procedure, namely, a picture. The basic foundation for
Turtle Graphics lies with the idea that specific problems of interest to the novice can

be tackled by simple programs.

2. Opverall Educational Benefit
LOGO involves more than just manipulating a turtle object or using
mathematics. Its essence involves thinking about processes and about how you are
doing what you are doing. In some cases of educational development, the process of
creating a product is more important than the final product. Indeed, it may be more

interesting to look at how a design was created than to look at the design itself.

a. Case Studies

Much research has been conducted on the relative benefits of learning
LOGO through Turtle Graphics. Although there are some studies with mixed or
inconclusive results, one conclusion is clear: The teacher is critical to the students’
success. Some of LOGO’s supporting case studies follow:

In one study, 45 third grade students were split into one of three groups,
of which two used LOGO and the third used an array of other “problem solving”
software. One LOGO group used problem solving strategies to solve graphics
problems, while the other used LOGO to solve geometry problems, The same
teachers using the same instructional methods, rotated through the groups. The
results showed no difference in the groups’ general problem solving ability.
However, those in the LOGO groups “planned more effectively” and “represented
the planning task differently” from the non-LOGO group. In both LOGO groups,
there was an increased understanding of geometry [LGL88].

In another study of four seventh grade mathematics classes, two classes

substituted one period per week of LOGO activities for traditional geometry

10

instruction. In pre-tests. the non-LOGO classes scored higher. However, at years
end, on a 60-item test on applications of angle estimation, the LOGO classes
improved 22% versus the non-LOGO classes’ 13%. Significant differences between
the two groups were found in all six areas of the post-test[Fraz87].

This study investigated the learning of fractions in the fourth grade, and
how LOGO affects the students’ understanding. All the fourth graders received the
same instruction on fractions. The control groups learned to program in LOGO, but
with no attempt to relate LOGO to their study of fractions. The test group was asked
to design software about fractions that they could present to third graders. At the end
of the study, the test group performed better than the control groups in knowledge
about fractions (as measured by standardized test) and in LOGO programming
ability. They also persevered in solving problems [Hare88].

This final study involved 48 children in grades 1 and 3, who were
randomly assigned to 28 sessions of either LOGO or drill and practice work. They
worked in pairs and were observed in terms of social interaction and problem
solving activity. When significant differences were found between the groups, they
favored the LOGO group. These differences occurred in three of seven categories of
social behavior defined for the study: resolution of conflict, self-direction and rule
determination. This study supports the use of LOGO as a means of encouraging
desirable social interactions that are likely to lead to subsequent problem solving
behaviors [CN88].

b. Problem Solving Skills

If children learn nothing else, in their early years of development, they
must learn some sort of general problem solving skills. For any project, their must
be an identifiable and attainable goal to reach. Given an idea for a project, consider

the following problem solving scenario.

11

Initially spend some time just thinking about how to approach the
problem, then experiment with some ideas. It is then necessary to break the problem
into small, manageable chunks, and solve the individual little problems. If one way
doesn’t work, then think of another. The ability of learning to look at a problem from
different approaches is the result of continuing to try new ideas and observing their
results. Once a better way of doing something is observed, the idea is modified and
tested. This becomes a cyclic approach until each little chunk is acceptable. The
smaller programs are then combined into the larger solution. This forms the basis of
a solution that is clear, precise, and with no ambiguity. The entire solution becomes
a sequential organization of fluid ideas that remain easy to understand and return to.

As researchers try to assess LOGO’s ability to improve problem
solving, they face the same difficulties as they have for years: problem solving in

any environment is extremely difficult to evaluate [YM90].

c. Specific Curriculum Benefits
LOGO’s Turtle Graphics provides the necessary structured
programming environment, that enhances one’s ability to creatively learn. The
underlying nature of Turtle Graphics can be beneficial to multiple curriculums of

education.

(1) Mathematics: This area is probably seen as most influenced by
Turtle Graphics. Estimation is introduced by working with distances and angles.
Polygons use REPEAT to create regular shapes. Number relationships are
investigated using perimeter and area. Symmetry is necessary when drawing points
and lines. Learning a coordinate system is required for plotting points and graphing

lines. Geometry is reinforced through drawing and measuring lines and angles.

(2) Programming: Proper techniques form the basis for writing

structured programs. Program design is accomplished through breaking down a

12

problem into smaller tasks. Flow of control is accomplished with branching and

conditionals. Variables and recursion exemplify the power of the language.

(3) Social Studies: A sense of direction is accomplished through
translation of the turtle’s heading into compass points. Cartography can be
introduced by making maps with Turtle Graphics. The concept of learning a foreign
language is apparent, as a result of creating and using foreign language primitive and

procedure names.

3. The Language
Although LOGO language is a completely, full-featured programming
language, it is only necessary to concentrate on the Turtle Graphics portion for the
extent of this research. The intent of this section is not to teach how to program in
LOGO, with the use of Turtle Graphics, but simply to provide an introduction to the

Turtle Graphics concepts and programming environment.

a. Turtle Space

Turtle space is defined by the dimensions of the screen on which the
graphics is to be displayed. Screen dimensions are generally stated in vertical (the
y-axis direction) and horizontal (the x-axis direction) measurements. It is imperative
to pinpoint the origin of the screen where x,y =0.

The turtle can be moved about the screen using cartesian Xx-y
coordinates or turtle coordinates. Cartesian commands send the turtle to a specific
x-y position or. the screen, without regard to the turtles current position.

In the turtle reference, all commands refer to the turtle’s current
position, not its final position. The turtle is moved forward, backward, turned left or

right in relation to where it is now.

13

In the cartesian system, the destination is the important thing; in the
turtle reference system, it’s the trip [Clay88].
b. Making Shapes

)
Turtle Graphics provides the necessary tool to draw graphics using

turtle reference commands. Consider using a turtle draw a square. The following
steps would be required, using the turtle metaphor to think through the process, to
complete the task.

1. “OK turtle, go forward 50 steps and turn right by 90 degrees. That
completes the left side of the box.”

2. “Now, go forward another 50 steps and turn right by 90 degrees. That
completes the top of the box.”

3. “Go forward yet another 50 steps and turn right, again by 90 degrees.
That completes the right side of the box.”

4. “Go forward another 50 steps and turn right 90 degrees. That completes
the bottom edge of the box.”

That completes the process to make a square. Figure 2.3 shows the
results of the turtle task, as well as two equivalent LOGO command translations.
The Repeat command shows the power of iteration in LOGO.

Turtle Graphics . —
Reference Commands

1. FD 50 RT 90 1 ¥
2. FD 50 RT 90

3. FD 50 RT 90
4.FD 50RT 90

-or- 4

REPEAT 4 [FD 50 RT 90]

Figure 2.3 Turtle Graphics commands for Square-process

¢. Making Procedures

It is sometimes convenient and necessary to be able to define a

particular process for further use. A series of LOGO commands may be grouped

14

together under a single name by writing a LOGO procedure. The name of the
procedure is a shorthand for all commands included in it, a form of encapsulation.
Typing the name of the procedure tells LOGO to automatically execute each line of
procedure in turn, just as if you had typed them, one after another, on the keyboard.

In the Square-process example, it is possible to define a square

procedure, for further reference, in the following manner:

TO SQUARES0
REPEAT 4 [FD 50 RT 90]
END

LOGO will add SQUARESO to all its other commands. Each time
SQUARESO is typed, the turtle will draw a square of size 50. The figure will be

drawn at the turtle’s current position on the screen.

d. Generalizing Procedures

Generalizing a procedure can add to the power of the command by
giving the user more control and flexibility. Consider the SQUARESO procedure.
This procedure could be edited each time a square of new dimensions is required, or
many SQUARE-like procedures could be defined, however this is not very efficient.
After all, LOGO itself does not have multiple ‘FD’ commands for every possible
length of a line drawn.

Arguments must accompany LOGO commands. Arguments provide
the command with the necessary missing information to complete its task. For
example, the line-drawing command, FD, must be accompanied by an integer
argument so that LOGO knows the correct length of the line to be drawn.

Consider the SQUARESO procedure. The value of the argument will

tell the square procedure how long each side is to be drawn. Changing the value of

15

this argument will result in boxes of different sizes. The new generalized SQUARE

procedure would look as follows:

TO SQUARE
REPEAT 4 [FD:EDGE KT 90]

END

The preceding concepts and examples nrovide the basic foundation for the
creation of Turtle Graphics as a programming tool used in LOGO. It is precisely
these basic foundations that provide a point of departure for the implementation of
Dataflow Turtle Graphics presented in Chapter IV.

C. PROGRAPH: A Visual Dataflow Program Style

Prograph [TGS88a, TGS88b, TGS91] is stated to be a “very high-level, picto-
rial object-oriented programming environment”, which integrates several areas of
computer science. Additionally, Prograph supports an object-oriented application
building toolkit. This section explores Prograph’s visual programming environment
including the use of dataflow diagrams for method definitions, and it’s use of icons
as programming language constructs. As a complete language, Prograph satisfies a
wide range of different programming requirements.

Prograph has been characterized as a hybrid OOP language, since it supports
primitive language types such as integer, boolean, character, etc. A pure OOP lan-
guage has no primitive language types; everything is an object [Booc91]. Addition-
ally, Prograph supports a feature which incorporates the use of universal methods,
thus adding to its hybrid likeness. These methods do not belong to any particular
class, but can be called from any method in any class [TGS88b].

The intent of this section is not to teach how to program in Prograph, but only
to provide a basic understanding the Prograph language, and its programming envi-

ronment. Several examples are taken from actual code provided by Prograph lan-

16

guage. Specific features are highlighted and discussed to provide an understanding

of how programs are written in Prograph.

1. Visual Systems-Iconic Based

There is no clear-cut definition as to what is meant by the term “visual
programming”, however, in general, it refers to the use of graphical representations
in the process of programming. This programming style is an extreme departure
from traditional programming and is not dependent on linguistic ability or limited
by the user’s knowledge of verbal syntax. Visual programming involves nonverbal,
visual information that is recognized and understood in a single, simultaneous
process.

Prograph is a fully visual development environment, as well as a fully
specified icon-based language. In contrast to text-based systems, icon-based
systems use pictures as programming language constructs, that is, executable
graphics. Prograph supports a highly visual prcgramming system which has
multiple windows for viewing program execution states, visual syntax editors for
designing program data structures, and graphical expressions in the windows
themselves. Figure 2.4 is a typical example of the visual nature of Prograph. It shows

a graphical representation of the hierarchy of base classes provided by the language.

a. Classes
Figure 2.4 shows the classes window for the base classes provided by
Prograph. All applications start out with these minimum template classes. Each
Prograph class is represented by a hexagonal icon displayed in the Classes window.
All class hierarchies for the program are displayed in the classes window. There can
be multiple class hierarchies, as required by the application. The lines connecting
individual classes within the hierarchy represent the inheritance links between

various classes. Prograph supports an upward inheritance.

17

@ Classes

[©

e

Application Menu Menu item Vindow Window Iem

A I,

<l

Figure 2.4 Graphical Class Hierarchy

The class icon itself is divided into a left and right half. The triangle on
the left-half of the icon represents the attributes of the class while the stacked
rectangles on the right-half represents the methods. Double-clicking on the left half
opens the attributes window for the particular class. Similarly, double-clicking the
right half opens the methods window for the class.

New classes are created, and will appear, by clicking inside of the classes
window. The new class is then given a unique name and is defined by adding the
appropriate attributes and methods. Attributes and methods are also created by

clicking in their respective windows.

b. Auaributes
Figure 2.5 shows the results of double-clicking on the left and right
halves of the class icon. Class attributes are represented by the hexagon shaped icons
while instance attributes, below the gray line, are represented by inverted triangles.
Inherited attributes have a downward pointing arrow inside of the triangle icon.
Figure 2.5 shows both inherited attributes, and local attributes. Local attributes are

not inherited and do not have the downward pointing arrow. Attributes can be

18

5

=

V Application _@ Application
<<Applicatio... W ﬂ
current Notify Mouse Down
NULL
Medify this method
front ﬂ to show your
“w About Ibﬁu(diabg.
v
same]
NULL Menu Click
v Front Yindow
owner
FALSE ‘W Modify this method
v ﬂ to update your menus.
active? Update Menus
v
menu bar

Figure 2.5 Application Attributes/Methods Windows

Prograph.

¢. Methods

Figure 2.5 also shows the Application-Class methods window. As seen,

19

assigned initial values by double-clicking on the icon and changing the value in the
attribute editor. Attributes can also be more than simple data types, they can be

instances of other classes; this is a means of representing a composite object in

methods are represented by an icon that contains a small dataflow diagram.
Additionally, their is a special type of method known as an instance generator, not
shown. Its has an icon that is represented by the symbols <<>> in a hexagonal shape.

This instance generator methcd may be invoked whenever an instance of that class

is created. This method also overshadows, by redefining inherited attributes or

methods, the instance primitive.

2. Visual Systems-Dataflow Based

Dataflow programming potentially represents a means for efficiently
exploiting the concurrency of computing on a very large scale. A dataflow language
is any language either based entirely on the notion of data flowing from one function
to another or directly supporting such flowing of data. In Prograph, active data flows
through the program, activating each instruction as soon as all of its required input
data have arrived. These instructions can be anything from a simple system-supplied
primitive, to a call to an arbitrarily complex user or system defined method. While
Prograph is inherently concurrent due to its dataflow design, the Macintosh is a
single-processor, and therefore sequential, machine.

Figure 2.6 shows the result of double-clicking on a method icon. The
lettering of the operators was added for clarity of discussion. Additionally, operators
D.E, and F were added to support the review of various Prograph operators. This
case window provides the dataflow programming interface window for defining the
actual behavior of the method. Undefined methods will open with only an input bar
along the top, and output bar along the bottom. Two terms critical to the dataflow
paradigm are terminal and root. Terminals represent the input objects that allow data
to flow into a method, while root represents the output object from which data flows
out of a method. Their icons are small circles attached to the top and bottom of
methods. They are uniquely numbered from left to right.

In the Window/Close method example, there are several types of Prograph
operators. Operator A represents a get-operation, and will result in retrieving the
labeled attribute value from the object flowing into it. Operator B represents a ses-

operation, which results in setting the labeled attribute value of the input object on

Window/Close 1:1

LSS S SLSILLSS LIS S SASL LSS LSS

=3

g
SISSSSISILSSSSSLISISSS LSS LSS S SSSSSSISS .

Figure 2.6 Case Window for Window/Close

<l

terminal-1 to the value of terminal-2. Operator C represents one way of making a
call to another method. The various ways to make method calls will be discussed
later. Operator D represents a persistent operation. Prograph is one of the few
OOPL:s that supports persistent objects. Persistents are defined as data or objects that
exists from one execution of a program to another. They are created and displayed
in a Persistents window that is separate from the Classes window. Persistents are
created in the same way as a class or method, and can be double-clicked to display
their values. Persistents allow the user to manipulate objects and store them within
the program so that they can be used later during the execution of the program, or
recalled during another execution of the program. Operator E represents a local
method operation and exemplify the encapsulation concept for managing complex

methods. It is only accessible within the containing method. Operator F represents

21

a typical primitive operation. Primitive are pre-defined methods provided by
Prograph.

a. Message Passing/Invoking a Method

Message passing, or invoking a method, in Prograph is accomplished
by creating an operation with the same name of the method being called. Prograph
assigns the operation the correct arity, number of input terminals and output roots,
based upon the arity of the method being called.

Methods may be invoked in several manners. Figure 2.7 shows four of
the most common means of calling a method. They include: universal reference,
explicit reference, data-determined, context-determined reference.

Method A represents a universal reference, where the format is
“method”. This is simply a call to a predefined, global method. Prograph will look
for the method draw in its universal methods file.

My Window/My Drau

UL L e il s
L]

<Gl ol |

Figure 2.7 Method Calling Formats

Method B represents a data-determined reference and has a format of
“/method.” The class of the object entering on terminal-1, of the method, determines
where Prograph will look for the proper method. Data-determined references
exemplifies the concept of polymorphism.

Method C represents a context-determined reference, and is of the
format “//method.” This form of reference indicates that the named method is to be
found in the same class as the current method that contains the method referencing
operation. This is a means of sending a message to itself.

Method D represents an explicit reference, and is of the form “class/
method.” Prograph attempts to find the specified method in the specified class. If the
method is not found in the specified class, Prograph will use the inheritance link to

check ancestor classes.

b. Control Structures

Control structures are essential features to any language. Prograph has
an extensive set of control features. These structures are required to have positive
control of the data as it flows through the program. These features are accessible
through the Controls menu. A subset of Prograph’s control structures will be
discussed here-in-below.

Most programming languages provide a means of conditional program
execution. In text-based languages, a particular syntax is used to structure such
variations in program flow. Typical language constructs for conditional execution
are: If <condition> Then <response> End or If <condition> Then <trueresponse>
Else <falseresponse> End or While <condition> Do <this> End or typical Case
statements.

The most basic Prograph conditional execution form is the Next Case

annotation with a match operation or a conditional test based on one or more of the

23

available boolean primitives. Next Case annotation has two forms, Next Case on
Failure, and Next Case on Success. These control structures are represented by a
small box icon attached to the right of the operation. Next Case on Failure has an
(X) enclosed in the box, while Next Case on Success has a (V) enclosed in a box.

Figure 2.8 shows the format of a typical Next Case on Failure. This
structure attached to a boolean operation means, “if this test fails, go to the next
case.” The same structure attached to a match operation means, “if the value coming
into this match operation is not equal to the constant value of this operation, go to
the next case.” The Next Case on Failure example is completely documented for
further review and understanding of this control structure.

Figure 2.9 shows the format of a typical Next Case on Success. This
structure attached to a boolean operation means, “if this test succeeds, go to the next
case.” The same structure attached to a match operation means, “if the value coming
into this match operation is equal to the constant value of this operation, go to the
next case.” Additionally, the Next Case on Success example is completely

documented for further review and understanding of this control structure.

Control/if-then-else#1 1:1

If value = A, stay in this case.
If value 2 A, do the next case.

SISSSSSSSSSSSILSSLSSSSSL SIS LSS S S S

This second case is executed only when a
next case’control fires in the previous
case. (When the input is not A.)

_‘Q
A or B? A B
W,
e A simple if statement, of the form:
) Ve IF value = A THEN do.a ELSE dob
Rif-then-else {]
7
if-then-else 1:2 if-then-else 2:2
LYLLLLSSSSSSLSLSSS LSS SISS LSS LSS W g
. . This is the d’.b code ’
Next case on failure to be A. AB,2B.. executed because
value ® A,

<l

Kl

JLLLLLLL AL Ll didiidd

1=

Figure 2.8 Case on Fail Control Structure

Control/if-then-else#2 1:1

Aeor B? A B

value

Bif-then-else]]

LSS SSLSTSSSSSSSS IS SIS SSSSS SIS SSSLS S

o
A slightly more complicated case,
F value # B THEN case | ELSE case 2
if-then-else 2:2
W (L]

if-then-else 1:2

The do.b code, executed because a next case
fired in the last case, which happened because

Next case on B.
Otherwise, do this case

{F value = B THEN
case 1
ELSE (value == B)
case 2

LU i

value=B,
A‘B’,a B ...

This second case is executed only when a
‘next case’control fires in the previous
case. (When the input is a B.)

QL D

@

«l o

Figure 2.9 Case Success Control Structure

]
]

Since Prograph is inherently parallel, and an operations’ execution is

only dependent upon the availability of input data, control of the relative order of

program execution can be very important. Figure 2.10 shows Prograph’s synchro

control structure. This enables the programmer to control the relative order of the

execution of a program.

Additional Prograph control features include Continue, Finish, Fail,

Inject, List, Loop, and Terminate structures, however, these won’t be discussed here-

in.

S ——————— R
Control/syncro 1:1
FQ

>>>>>>>>>>>>
7 Z

SIS IS ILS LSS LIS LSS LSS SIS S S SIS SIS IS

ol __ _ N
Figure 2.10 Synchro Control Structure

27

I1I. DATAFLOW TURTLE GRAPHICS

The previous chapters were presented to give the reader a basic understanding
of Object-Oriented Programming, Turtle Graphics Programming, and the Visual
Dataflow Programming with Prograph. This chapter presents the reasoning for
implementing a Visual Dataflow Programming Turtle Graphics Language.
Additionally, this chapter will explain the design and specifications considered in
implementing DFTG.

A. LANGUAGE EVOLUTION

Programming Languages have evolved through multiple generations, over the
last thirty years, from low level, to high level, to very high level, to ultra high level.
Although there is no universal agreement on the division and definition of the
different levels of languages, one characteristic stands out without much dispute: as
the level goes up, fewer details are required from the user.

Another observation is that, with few exceptions, the tradition of linear
representations persists from generation to generation. Instructions are given to the
computer in a statement-by-statement manner. The structure of the programming
languages remains one-dimensional and textual.

In contrast, visual programming represents a conceptually revolutionary
departure from this tradition. Graphical representations and pictures have come into
play in the programming process. This evolvement of the traditional programming
language is stimulated by several premises.

1. Pictures are more powerful than words as a means of communication.
They can convey more meaning in a more concise unit of expression.

2. Pictures aid understanding and remembering.

3. Pictures may provide an incentive for learning to program.

4. Pictures do not have language barriers. When properly designed, they
are understood by people regardless of what language they speak.

Additionally, visual programming has gained momentum in the past few years
because the falling cost of graphics-related hardware and software has made it

feasible to use pictures as a means of communicating with the computers.

B. WHY VISUAL PROGRAMMING

The challenge at hand is to bring computer capabilities, simply and usefully, to
people without special training in programming. Visual programming represents a
conceptually revolutionary approach to meet this challenge. This section pursues the

basis for implementing Turtle Graphics in a visual programming style.

1. Dual Brain Theory

The human brain is divided into two hemispheres. For the control of
movement and analysis of sensation, the assignment of duties to the two
hemispheres follows a simple pattern: Each side of the brain is responsible mainly
for the other side of the body. However, the distribution of the more specialized
functions is quite different. Linguistic ability is dependent primarily on the left
hemisphere, while the perception of melodies and nonverbal visual patterns is
largely a function of the right hemisphere.

Additionally, it is generally believed that the left side of the brain thinks
analytically and ‘ogically, while the right side thinks in a more intuitive and artistic
sense. The left side is thought of as a sequential information processor, highly
developed for verbal expressions. The right side, on the other hand, seems to be
capable of more parallel processing. An image is captured as a whole. For example,
when a face is seen, an immediate recognition takes place [Shu88].

Programming has always been thought of as an activity which requires the
ability to think analytically, logically, and verbally. Visual programming represents

a recent attempt to exploit the nonverbal capabilities of the right side of the brain.

2. A Need For a New Programming Style

Recently, the decreasing cost of computing, coupled with the widespread
use of personal computers, has acted like a catalyst for more applications. By
necessity, end-user computing is becoming a major trend, and expected to grow in
the future. It will be extremely difficult to achieve this phenomenal rate of growth
unless the style of computing evolves to such a state that a large portion of the user
population can use a computer without thinking deliberately about it, much like
driving any car. Thanks to the engineers who made it possible, it is not a concern
with how an automobile works. Instead, energies can be spent deciding how to get
from one place to another.

Learning to program in the traditional text-based languages, unfortunately,
is a time-consuming and often frustrating endeavor. Moreover, even after the skill is
learned, writing and testing a program is still a time consuming and labor-intensive
chore. Programming has the tendency to lead to what has been termed “analysis
paralysis.” This refers to forgetting what the intent of the process is to produce by
getting wrapped up in process of getting it out [Shu88]. It is precisely for these
reasons that a Visual Dataflow Turtle Graphics Language was implemented in this
research. It will provide the end-user with an intuitive, easy to leam, tool thus,
allowing the user to spend more time on the critical, problem-solving thought

process, rather than on the constructs and syntax of the language.

C. WHY DATAFLOW PROGRAMMING

For many years, graphs and diagrams of various sorts have been used as visual
aids for the illustration or documentation of one or more aspects of the programs.
But these graphical aids, for the most part, did not comprise the programs
themselves. They were not executable. Until recently, the high cost of the graphical

terminals, and the large data storage needed for graphical representations, have kept
the graphing and diagramming techniques on paper only.

However, the result of advances in technology and economics have made
possible the incorporation of charts, graphs, and diagrams as graphical extensions of

executable code.

1. Executable versus Non-Executable Diagrams

By taking a look at the traditional process of programming, multiple
advantages can be seen by making charts, graphs, and diagrams executable.
Traditionally, programming involves several distinct phases: problem analysis, chart
or diagrammatic program depiction, translation (compiling/interpreting), and
testing. And, more often than not, these processes would require several iterations at
various points.

One serious problem with non-executable, visual programming aids, has to
do with the need to keep both the charts or diagrams, and the code (which are
basically two representations of the same program) up-to-date. It is not surprising
that somewhere in the debugging process, the visual aids, no longer represents the
actual code that is executed, and consequently creates problems in later maintenance
of the program. Making charts or diagrams executable is an attempt to collapse the
two separate processes (charting and coding) into one. This not only makes
programs easier to comprehend, but also easier to document and to maintain.

Through the emulation of Prographs’ dataflow paradigm, Dataflow Turtle
Graphics provides a very-high-level dataflow programming tool that is directly

translatable into executable code.

2. Dataflow Functionality

Dataflow languages sequence program actions by a simple data availability

firing rule. When an operation’s arguments are available, it is said to be “firable.”

31

After firing, the operation’s result is passed, via the diagram, to other operations
which need these results as there arguments. Dataflow programs are easily
integrated with larger programs through a simple diagram connection line. The
diagrams present an intuitive view of the potential concurrency in the execution of

the program, as well as, providing a formal meaning to the program itself.

D. ICONIC LANGUAGES

Iconic systems are made up of both visual and audible icons. While some
literary systems are capable of expressing an infinite range of feelings, ideas,
concepts, and thoughts, programming languages do not need the same range of
expressiveness. However, through the study of literary systems, several lessons can
be observed.

1. Iconic Guidelines

Since the clarity or meaning of a pictorial icon is not always apparent, it is
essential to spend time with the design of icons. As with any tool, there are good
pictures and bad pictures. The result of implementing the latter, may be to produce
objects or concepts that are confusing or hard to remember.

Another common argument for employing graphics and icons is, that by
doing so, the brain can be tapped for it’s powerful pattern recognition capabilities.
It must be noted, however, that the human brain is susceptible to information
overload. It is important that the graphics are not so overwhelming that they can no
longer be processed effectively.

Lastly, providing access to an icon’s definition is extremely important and
necessary for an iconic language. A dictionary must be provided for the potential
vast number of pictures in an iconic system. When the number of icons is small, it
is possible to have them presented on the screen so that the user can point to the one

desired. This method is not possible when the number of icons is large.

32

Iconic programming languages provide an incentive to learning. Pictures
provide the user with challenge, fantasy, and curiosity. It is for these reasons that all

visual systems must incorporate some level of iconic programming.

E. TURTLE GRAPHICS DESIGN AND IMPLEMENTATION

The design and implementation of Dataflow Turtle Graphics is centered upon
creating a graphics programming tool that combines the benefits of visual dataflow
programming, including the use of icons, with the extremely successful concept of
Turtle Graphics. By exploiting the benefits of the chosen programming style, it is
possible to increase the benefits gained through Turtle Graphics.

The system is designed for the user to interface through a windowing
environment utilizing a mouse. Additionally, it provides standard Macintosh editing
functionality, and on-line Help. All Menu options are supported by “Hot Keys.”

The design and implementation for this research was basically two-fold. First,
it was necessary to create a Turtle object, with specific attributes, that could be
defined by the user. Having created this Turtle object, it was then necessary to define
how this object should respond, behaviorally, to specifics messages. These methods
of behavior include, but are not limited to: forward, turnto, turnright, ect., and are
fully defined in Appendix A.

At the completion of this implementation phase, the user was required to
interact directly with the Prograph programming environment to program the Turtle.
This led to the second, and most demanding, phase of the implementation process.

To remove the necessity of the user being required to learn Prograph, it was

necessary to integrate the Turtle Graphics code with a portion of code from

Armedeus!. The successful completion of this code integration exemplified the

1. Ammedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Deparument, Naval Postgraduate School,
Monterey, Ca.

33

object-oriented concepts of developing reusable, sharable, integratable, and

extendable code.

1. Developing Turtle Class/Objects and Methods

The design of the Turtle Class was driven, primarily, by what behaviors the
objects of the class were required to perform. General behaviors included the ability
to draw graphics, through various manipulations, on the screen. The code for this

phase of implementation was developed and tested prior to integration.

a. Class Hierarchy

The design of the Class hierarchy was based on the need for creating
Turtle objects, as well as, the requirement to develope a user interface to define and
test the graphics tool. Figure 3.1 shows the graphical class hierarchy for the first
phase of implementation.

The Turtle Class would be the template class for all Turtle objects
created thereafter. It would include the necessary attributes and methods common to
all Turtle objects. The pTurtle Class contains an augmented list of methods and

attributes, necessary to respond to more complex user commands.

@ Classes
ystem Turtle
Application Menu Menu ltem VYindow Yindow ltem
pTurtle
Turtle¥in TurtleMaker

Figure 3.1 Class Hierarchy

34

The user interface was developed to define the Turtle object, and for
displaying all graphics. TurtleWin and TurtleMaker Classes provide the templates
for the user interface needs. The general function of these interface windows, for the
first phase of implementation, is provided below. Final interface-window
functionality will be provided with the discussion of the implementation of the

second phase.

b. Turtle/pTurtle Class Definitions
Figure 3.2 depicts the graphical representation of Turtle Class. It
contains the necessary framework to define specific Turtle instances. Additionally,

in this implementation, it serves as the superclass for the subclass pTurtle.

V Turtle @) Turtie
“Turtle name... Q = == —Q
hame pendown penup
{ 200 200) —
loeavtion @
% turnright turnleft
h::“i';g ‘@" fd
tailvidth _)
trailColor turnte goto
TRUE
TraYOn? @ set u draw I3

Figure 3.2 Turtle Class Definition
Figure 3.3 shows the graphical representation for pTurtle class.
Although all attributes are not shown, pTurtle class has inherited all Turtle class

35

attributes. Additionally, it has augmented its attribute list with the attribute program,

and its methods with several complex methods to expand the users list of available

commands.

V pTurtie " @) pTurtle
v AR &
heading circle doSide&Turn
NULL —
\V4 1
tailWidth pc!n de .. ‘!
NULL = orely
traﬂWcOlor @
NULL square doPolySide&Turn T
v Rl f =l
v parallelogram
program

rectangle do rectugk doRQet

Figure 3.3 pTurtle Class Definition

To support drawing routines, it was necessary for each Turtle instance

to know some basic information about itself. At a minimum, the Turtle object had

to know its location on the drawing screen, the heading or direction it was going, and

its name. To give the user some additional control over the Turtle, pen-characteristic

controls were provided. These controls include, setting the pen-width, setting the

pen-color, and turning the pen on and off. A more complete definition of these

methods is provided in Appendix A.

¢. User Interface Design and Implementation: First Phase

Developing an intuitive user interface should be the goal of any

interactive program. The interface design for Dataflow Turtle Graphics requires the

user to interact in a windowing environment using a mouse. The system provides
standard Macintosh editing functionality, as well as, on-line help and “Hot Keys”
for all Menu options.

The first phase of implementation consisted of three general interface
windows and a menu bar: Turtle Maker, Turtle Display, Prograph’s method-
programming windows, and File, Edit, and Turtles menu options.

Figure 3.4 shows the Turtle Display window which displays the

graphics routines that have been programmed. The Draw button serves two purposes
Turtie Display

iraw

MH
Figure 3.4 Graphics Display Window
by initiating the drawing of all programs that have their “Trail On?” switches set,
(see Figure 3.6), and also by activating Prographs’ method programming window
for those Turtles that have not yet been programmed. The Clear button simply clears
the graphics screen.
Figure 3.5 shows the Turtles menu options. The New option will open
the Turtle Maker interface window (see Figure 3.6), allowing the user to set specific
Turtle attributes. The Delete option removes one of the listed Turtle programs that

LY)

appear below the g - line. The check-symbol, appearing next to the name implies
that the Turtles’ “Trail On?” attribute is set, and represents whether a program is
active for drawing purposes.

[urtles

New
Delete

Program 2

Figure 3.5 Turtles Menu Option

Figure 3.6 shows the Turtle-definition interface window. This is
opened when the New option in the Turtles menu is selected, or if any of the listed
programs is selected. This provides an editable environment for setting or changing
the name, heading, location, pen-size (Trail Width), pen-on/off (Trail On?), and pen
style or color (Trail Color) attributes. The result of depressing the OK button sets the
attributes of a previously defined Turtle, or creates and sets the attributes of a new
Turtle object. Cancel button simply cancels the operation and returns to the graphics
display window. The format for entering location information is *“{vertical-offset
horizontal-offset}”. The origin of the screen, {0 0}, is located at the upper-left -
hand, comer of the display screen. Turtle heading information is entered as a
positive integer value, 0 - 360. Compass heading relations are: North-0, South-180,
East-90, and West-270.

38

Turtle Maker

Name

Location Heading

Tail Width in Pixels

Ot O3 O

02 O+ O8

DA Trait Ba? Trail Color
O Black

(ok) Ownite
Q bray

((encel J O Lite Gray
O Bork bray

Figure 3.6 Turtle Attribute Interface Window

2. Integration of Turtle Code and Dataflow Programming Code
After completing the first phase of design and implementation, it was
necessary to relieve the user from the requirement of Turtle programming within
Prographs’ method-definition window. Armedeus provided the necessary visual
dataflow programming environment to be integrated with the completed Turtle
Graphic code.

a. Class Hierarchy

Figure 3.7 shows the revised class structure for the final Dataflow
Turtle Graphics language. The obvious goal was to maximize the benefits of the

object-oriented design by taking a “black box” approach with the code integration.

39

Turtle hierarchy remained disconnected from the Dataflow hierarchy, and new

subclasses were created as required.

@ Classes

Apphcahon Henu Henu ltem /deov deov Item

& . @

Turtle TurtleMaker DFEvaluator

w8

D FNonOpr

pTurtle DFOperator
o
o
DFParameter @@ DFUsrOpr
DFTurtie DFinputBar D) oeroitoor
rimOp!
DFOutputBar DFProoram

Figure 3.7 Dataflow Turtle Graphics Class Hierarchy
The Dataflow system, in general, provided the windowing environment for
the programming interface, and the code for the interpretation of the programmed
objects. Some changes in the existing code was necessary to support the correct
translation of new programming objects. However, the intent of this research was
not to re-design the code provided by Armedeus, but rather to re-use as much of the
existing code as possible to efficiently create a functional Dataflow Turtle Graphics

prototype, thus maximizing the benefits of an object-oriented design.

b. DFObject and Descendents

DFObject represents the superclass for all programming objects. It has
two immediate descendents, DFOperator and DFNonOpr. DFOperator represents

the superclass for all objects that translate into either predefined primitive operators/
user commands or user defined operators/commands. Additional descendents
include input bar, output bar, and DFProgram. These latter three objects remain in
the design and implementation phase and are not completely functional. All of these
objects have single or multiple input values and a single output value.

DFNonOpr represents those objects that do not translate into graphics
commands. These objects have only a single output value which is an integer or a
Turtle object.

c. User Interface Design and Implementation: Second Phase

The second phase of design and interface implementation consists of
three general interface windows; Turtle Maker, Turtle Display, and Manipulation
Window. The Menu bar consists of File, Edit, and Turtles options. The major
interface changes required the incorporation of Armedeus’ Manipulation Window
for dataflow programming, and removing some of the functionality of the old Turtle
Display window. The Turtle Maker interface window remained unchanged,
however the means of accessing it has expanded to include double-clicking a Turtle
object on the Manipulation Window.

Figure 3.8 is the Manipulation Window used for programming the
Turtle objects. It contains several function buttons, and a programming pad. Generic
input programming objects are place on the pad by clicking anywhere on that pad.
After typing the desired object name (turtle name, command name, or integer value)
into the generic input object, an appropriate object icon will replace the generic
object. The object “Sam” shows the icon representing a Turtle object. Objects may
be removed from the programming pad by clicking on them, to highlight them, and
depressing the keyboard Delete button. Manipulation Window button functionality

follows:

4]

Display Program will provide a listing of previously defined programs for the user
select to be displayed on the programming pad. Save Program prompts the user to
name the displayed program, and saves that program for further reference. Delete
Program provides a listing of saved programs, and prompts the user to select one
for deletion. Clear simply clears the programming pad. Redraw will refresh the
programming pad with the latest displayed program. Define Primitive is not
completely functional, but it provides the user the ability to define a new primitive
command. The user will be prompted to name the new command, after which the
programming pad will be augmented with the appropriate number of input bars and
an output bar. The user will then finish the dataflow program and depress the Save
Primitive button. This will save the displayed program as a new user command for
further use. Additionally, the Help listing will be updated to include this latest
command. The Draw-Turtle-Icon button represents the function of drawing or

executing the displayed program.
Manipulation Window

5

vl
=R

@ismag Progranﬂ

_m [Save Program)

s%m (Delete Program)

[ClearJ (Redrawj

@efine Primitiue]

[Saue Primitiuej

Figure 3.8 Dataflow Programming Window

42

Figure 3.9 is the revised Turtle Display window. It is activated by
depressing the Draw-Turtle-Icon button. Much of the original functionality of this
window was moved to the Manipulation Window, since Turtle Display window was
no longer the main program-window. The OK button clears and returns the
operation back to the Manipulation Window for new or revised programming. The
Print button will print the displayed graphics.

Turtle Display

Displayed Graphics UK

are either discarded

or may be printed.

Figure 3.9 Revised Turtle Display Window
One last interface window, not previously discussed, is the Help
window. This window, although accessible to the user, does not yet contain

command help information, nor is it automatically augmented with the creation of

43

new user defined commands. Figure 3.10 shows this interface and explains its

design and implementation.

Turtie Graphics Help

mmmmm el SToe 1| ga 1

This window will display defmltlons for el
predefined user primitives. It will be accessed
either by the Help-option from the File Menu or will
be directly accessed by "option-clicking” on the
desired command. Additionally, this list will be
augmented with the addition of each new user
defined primitive.

Figure 3.10 Turtle Graphics Help Window

d. Program Objects: Icon-Description and Functionality

Figure 3.11 shows the Manipulation Window with various
programming objects. The lettering of each object was added for clarity of
discussion. Object A, as stated previously, represents a programmable Turtle
Object. The Turtle icon has only a single output value, since it does not require any
input information for execution. Double clicking on this object will automatically
open the Turtle’s Maker-definition window for reviewing or editing. Object B,
represents an integer value parameter, and also has only a single output value.
Object C, is a typical predefined operator/command, and is represented by a “black
box” with the appropriate number of input terminals and an output terminal. Double-
clicking on any predefined operator will open the Help window to review its
definition. Object D represents an operation that encapsulates a program. It’s icon
consists of multiple black boxes, and has no inputs or output, since it represents a

stored programmed. Figure 3.12 shows the result of double-clicking on any

program-operator. This is the actual code that defines the program and can be edited

as required. Object E represents a user defined operator. Its icon is identical to any
Manipulation Window

O
° : e

U)is;xmy f'mgramJ
(Sape !‘;'tagramj

[Belei ¢ ngrmrﬂ

| (Zieaﬂ &3(5(3!'61!')
E. Inewcommondl
L *]

Baefine !'rimit’meJ
l (Sewe Primiﬁvcj

Figure 3.11 Programming Object Icons

predefined operator, since it functions in the same manner as a predefined operator.
However, when these objects are double-clicked, their associated program window
opens for editing or reviewing. Figure 3.13 shows the code for the newcommand
operator.

Turtles are programmed by connecting dataflow lines between
appropriate roots and terminals. This is achieved by clicking on either of these
objects, then clicking to the point of connection. Programmers are prevented from
connecting root-to-root or terminal-to-terminal, and are provided a warning

message.

45

Manipulation Window

B

w4
Gy

ﬁismay Pragram

195 144

(Sape Pragiam)

Belete F'rcgrmﬂ

ﬁ:lear] @tuil'&mﬂ

[nefme Primmpeg

doSide®Turn
| ¢}

(Szwe Primitipe)

Figure 3.12 Stored Program Code for Star

Appendix A provides detailed definitions for all predefined user
commands. Chapter IV will show how to use these tools to produce a Dataflow

Turtle Graphics solution for a particular project.

Manipulation Window

|2

o __ Qo o 0

.

doSide&Turn

N
R

E)ismag i'mgram)

(Sime Pragyram J

(nelei e Program)

(Ck‘k‘@ @e(!rmv

(I!ef'me F'rimmve]

‘ Sapve Primitine l

Figure 3.13 User-Defined Oper;ltor Code

47

IV. PROBLEM SOLVING WITH DATAFLOW TURTLE GRAPHICS

A. GENERAL DISCUSSION

The primary purpose of this chapter is to show how to utilize the tools provided
in this thesis to solve a particular problem. It is assumed that the user has the basic
knowledge of Prograph to activate the Turtle Graphics Application. Additionally, the
user will be required to save any programming done in Turtle Graphics, at the
Prograph prompt, when quitting. Lastly, all figures show the actual programming
and output windows from the functional prototype.

B. PROBLEM STATEMENT
The problem at hand is to create a very basic Dataflow Turtle Graphics solution
to display a picture of a “man”. Keep in mind that the crude graphics are not as

important as are the steps that were taken to complete the project.

C. DEVELOPING A SOLUTION

First, and foremost, there is no single correct solution to this problem. The
approach to the solution herein attempts to follow the same concepts that have been
brought forward in this research. The limits of the functionality of the prototype, in

some cases, has required relatively complex coding to achieve a simple result.

1. DFTG’s Object-Oriented Approach to Problem Solving
Dataflow Turtle Graphics provides an intuitive tool, in the turtle metaphor,
for programming specific components of an overall solution. The turtle class
represents a logical collection of abstract turtle objects instead of subprograms, as in
earlier developments of Turtle Graphic languages. The flexible and intuitive nature
of Dataflow Turtle Graphics provides for a sound object-oriented programming
solution to problems. DFTG allows the user to modularize, or partition, the problem

into individual components, thus reducing the overall complexity by creating a

48

number of well-defined boundaries within the program. The development life cycle,
using DFTG, emphasizes the incremental, iterative development of a solution. The
intent is to design, program, and test components separately. As components are
completed, they are integrated until the entire solution has been programmed. With

this approach, there is never a big-bang event of system integration.

2. “Man-Project” Problem Reduction

The generic image of a “man” object will be divided into the following
separate components: Head, Face, Body, Arms, Legs, and a Bowtie. Each
component will be programmed with it’s own individual Turtle object, with the
exception of the arms and legs, which will use the same Turtle. Separate Turtles
allow for individual characteristics and controls over that specific part. Additionally,
separate turtle objects offer the abstraction benefit for developing these individual
components. As components are completed they will be integrated together to solve
the overall project.

a. Create Turtles
The first thing to do is to create some new Turtle objects. This is
accomplished by selecting New from the Turtles Menu. Each Turtle will be uniquely
named and defined.

b. Creating the Head
Figure 4.1 represents the code to display a crude head object. To execute
the displayed program, depress the Turtle Draw Icon. When satisfied with the
displayed code simply depress the Save Program button. Name this program, head,
at the prompt. This, in affect, has encapsulated the displayed code in a single

command.

49

Manipulation Window

e

nr2

Figure 4.1 Head Solution

¢. Create a Face

The next step is to create a face for the head object. Figure 4.2 shows the
code to create this face. This Turtle is responsible for drawing the eyes and mouth.
This code shows clearly, the need for a “move” operation that has the same result as
a “forward” operation with no drawing. Again, when satisfied, save this
code as face.

Figure 4.3 shows the encapsulated code, and the results of executing the
head and face routines. Any changes, made to the individual routines to satisfy

integration, must be saved at the prompt.

d. Create a body

Figure 4.4 shows the code to create a body for this project. It consists of a
neck and trunk shape. Again, when the solution for the body is acceptable, save this

program as body.

Manipulation Window

e

nré
turnto {50 I 38)

90 L

25

forward}

penup

pendown

doSide&Turn

doSide&Turn
| *)

Figure 4.2Face Solution

e. Create a bowtie

Figure 4.5 shows the code for the bowtie. Save this program as bowtie.

Figure 4.6 shows the integrated code for the bowtie and body parts, as well as, the

result of this execution.

51

Display Window

Manipulation Window

Figure 4.3 Head/Face Integration
At this point, there exists solution routines for head, face, body, and bowtie.

Figure 4.7 shows the code and results of executing these routines together.
Manipulation Window

<

forward

<

doSide&Turn

4 4 LS

rectangle

Figure 4.4 Body Solution

52

f. Create legs
Figure 4.8 shows the code for the creating legs for the man object. Figure
4.9 shows the results of integrating the previously defined routines with the legs

routine.

Manipulation Window

5

nri 65

30 g5
turnto {103 138) .

doSide&Turn
L)

Figure 4.5Bowtie Solution
Manipulation Window Display Window

P

bowtie))

body))

Figure 4.6Integrated Body/Bowtie Solution

53

Manipulation Window Display Window

Figure 4.7 Head/Body Integrated Solution

g. Create arms
Creating the arms will complete the modular development of the “man”
project. Figure 4.10 shows the code to display arms for the man. Figure 4.11 shows

the integration of the previously defined routines and the arms routine.

h. Final Code Encapsulation

In order to display the project, “man”, in a single command, depress
Save Program while all subroutine calls are displayed. Enter man at the name-
program prompt. Figure 4.12 shows the new call to the encapsulated man routine.
This now can be used with other encapsulated routines to develope additional
displays. Keep in mind, the idea is to break up a large problem into smaller,
manageable components, complete or solve the smaller components, and then
integrate the completed routines to solve the larger problem. It’s a simple, yet
powerful problem solving strategy, that can be reinforced and refined through the
use of Dataflow Turtle Graphics Programming.

Manipuiation Window

rectangle

Figure 4.8 Legs Solution
Manipulation Widow 1splay Window

m face

Figure 4.9 Head/Body/Legs Integration

55

Manipulation Window

penup

forward |

pendown

= 4 4 ¢

Figure 4.10 Arms Solution
Manipulation Window

bowtie)) |

Figure 4.11Complete Integration

56

Manipulation Window

o)

d

Figure 4.12 Final Man Encapsulation

57

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
RESEARCH

The purpose of this research was to design and implement a Dataflow Turtle
Graphics programming language for children to use to develop their problem
solving skills, as well as their fundamental programming skills. This research
provides the first stage of development for a complete Turtle Graphics Language.
There was no related research locally, prior to this implementation of Turtle
Graphics, however this project does use some special purpose code, dataflow

programming environment, developed in another research project, Armedeus’.

A. SUMMARY

In summary, a complete literature review was accomplished in which Object-
Oriented programming, Logo’s Turtle Graphics programming, and the Dataflow
Programming Language Prograph were researched. The design and specifications
for developing a Dataflow Turtle Graphics Language was reviewed, and an object-
oriented prototype was implemented.

This research development has come from the intersection of a multiplicity of
ideas including: Object-Oriented program design, Turtle Graphics, and Visual
Dataflow Programming. The proposed combination of concepts presented in this
research provide a new and exciting tool. It is characterized by being generally
accessible, and offering a service perceived as being usable and useful to a variety

of users.

1. Armedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, Ca.

58

B. CONCLUSIONS

The strongest indicator of Turtle Graphics effectiveness is that studies are
conducted on how it helps children. In itself this demonstrates it’s wide recognition.
Unlike a multitude of educational software, versions of Turtle Graphics languages
have evolved over the past 30 years, and is as worthwhile now as when it was first
introduced. Along with the development of Logo language, comes the
encouragement users require to explore, learn, and think.

Datafiow Turtle Graphics, through the combination of the Turtle-metaphor in
Turtle Graphics and Dataflow programming, provides users with an intuitive tool
that allows them to spend less time learning the linguistic constructs and syntax of
the programming language, and more time on the key issue of problem solving. This
is primarily do to visual style of programming required to solve problems. The
visual implementation of this prototype language, including the dataflow paradigm
and iconic constructs, is easy to learn and offers new users the power to program
relatively complex graphics routines in short order. It provides users with a
programming tool that is more in-line with the natural way of thinking.

Although DFTG is not a complete programming language, it provides the
necessary features to argue for further development of a fully complete Dataflow

Turtle Graphics Language.

C. SUGGESTIONS FOR FUTURE RESEARCH

Future research in this area should include, but is not limited to, the following
areas: completion of “user-defined Turtle command”™ functionality, completion of
“user-help” functionality, implementation of additional Turtle functionality,
expansion of language control constructs, implementation of more complete error
detecting capabilities, and the incorporation of a programming pallet of available

commands to speed up and simplify the programming process.

59

1. Completion of “user-defined Turtle command” functionality
This programming feature is necessary for all languages. Although this
feature is not completely functional, this prototype does show the added power and
flexibility that it would provide. User-defined commands provide a means for

programmers to fully explore their creative problem solving skills.

2. Completion of ‘“user-help’’ functionality
DFTG has provided the necessary windowing interface for Help support,
however the complete command definitions need to be incorporated. Expanded
functionality would include, the ability to access any command-definition directly
without browsing through the entire dictionary, and the ability to augment the

dictionary with the creation of new user-defined commands.

3. Expand language control constructs
This prototype is limited in its control constructs. The user needs to be able
to control the flow of its program throughout. At a minimum, DFTG should be able
to support looping, next-case, and termination capabilities. At present, DFTG’s
complex predefined commands, such as square, polygon, doSide&Turn, ect,

provide an iterative function through their right most terminals.

4. Fully implement Error detection/correction capabilities

Error messages should be clear and informative. Warning messages should
provide the user with the ability to correct a situation before program execution. It
is sometimes desirable to be provide a warning message prior to saving changes to
an existing program or deleting portions of code. Additionally, it might be especially
helpful to be warned when duplicate names are being used for different programs.

The bottomline is that, DFTG needs to provide a friendly and forgiving environment

for programming. This, in and of itself, will encourage the user to continue to use
DFTG.

5. Incorporate a programming pallet of available commands
Programming pallets have shown to be quite useful in graphics
applications. Providing a pallet of user commands would provide a means to

simplify writing programs, as well as speed up project development.

6. Implement additional Turtle functionality
DFTG’s object-oriented design has left the door open for adding new Turtle
functionality. This may include, but is not limited to, adding math symbols to create
math functions, using sound for creating music, and incorporating pictures for

creating visual story books.

7. Perform statistical studies of user effectiveness
Do to the limited functionality of the present implementation of Dataflow
Turtle Graphics, it was not possible to include user studies to substantiate it’s
effectiveness. As the functionality of Dataflow Turtle Graphics expands, there
should be an in depth analysis of the actual effectiveness of this Turtle Graphics
versus the traditional text-based versions of Turtle Graphics.

61

APPENDIX A - USER COMMAND/METHOD DEFINITIONS

A. Turtle Class

1. forward
Description: Draws a line, in the direction of the input turtle heading, of
length equal to the distance of the input number.
input: turtle; number (distance)
output: turtle

2. drawto
Description: Draws a line from the location of the input turtle to a specific
location on the display screen.
input: turtle; point {X-vertical displacement Y-horizontal displacement}
output: turtle

3. goto
Description: Moves the input turtle from its present location to a specific
location on the display screen. No line is drawn.
input: turtle; point { X-vertical displacement Y-horizontal displacement}
output: turtle

4. turnright
Description: Shifts the input turtle’s heading, X-degrees, in a clockwise
manner.
input: turtle; number (X-degrees)
output: turtle

S. turnleft
Description: Shifts the input turtle’s heading, X-degrees, in a
counterclockwise manner.
input: turtle; number (X-degrees)
output: turtle

6. turnto
Description: Shifts the input turtle’s heading to a specific heading: North -
0 or 360, South - 180, East - 90, West - 270.
input: turtle; number (X-degrees)
output: turtle

7. penup
Description: Deactivates the drawing capability of the input turtle. Results
of all commands after this command remain the same with the exception that no
drawing will take place.
input: turtle
output: turtle

8. pendown

Description: Reactivates the drawing capability of the input turtle.
input: turtle

output: turtle

63

B. pTurtle Class

1. doSide&Turn

Description: Draws a line, in the direction of the input turtle heading, of
length equal to the input number(distance). The turtle heading will then be updated
by turning in the direction appropriate with the input number(degrees). A positive
input number will yield a clockwise update, while a negative input number will
cause a counterclockwise update. This command routine will be iterated as many
times as the input integer.

input: turtle; number (distance); number (degrees); integer (iterations)

output: turtle

2. polygon
Description: Draws one or more (iterations) of a polygon whose side
lengths are equal to the input number, and number of sides equal to the input integer.
After each complete iteration, the initial turtle heading will be adjusted by adding an
amount equal to (360 / number of iterations).
input: turtle; number (side length); integer (number of sides), integer
(iterations)

output: turtle

3. square
Description: Draws one or more (iterations) of a square whose side lengths
are equal to the input number. After each complete iteration, the initial turtle heading
will be adjusted by adding an amount equal to (360 / number of iterations).
input: turtle; number (side length); integer(iterations)
output: turtle

4. triangle
Description: Draws one or more (iterations) of an equilateral triangle whose
side length is equal to the input number. After each complete iteration, the initial
turtle heading will be adjusted by adding an amount equal to (360 / number of
iterations).
input: turtle; number (side length); integer(iterations)
output: turtle

5. circle
Description: Draws one or more (iterations) of a circle whose radius is
equal to the input number. After each complete iteration, the turtle heading will be
adjusted by adding an amount equal to (360 / number of iterations).
input: turtle; number (radius); number (radius); integer (iterations)

output: turtle

6. rectangle
Description: Draws one or more (iterations) of a rectangle whose side
length: are equal to the input numbers. After each complete iteration, the initial
turtle heading will be adjusted by adding an amount equal to (360 / number of
iterations).
input: turtle; number (side length); number (side length); integer
(iterations)

output: turtle

65

APPENDIX B - NEW TURTLE GRAPHICS - SOURCE CODE

& Classes

@@

®

Application Henu Henu Item ""d ' Yindew ltem
@ @
Turtle t Turtle¥in Turtlehaker Connector

@P.‘

@D DFHonOpr DFOperator DFEvaluater
pTurtie

e, b ® p. W

U
DFParamtor DFOutputBar
DFUsrO

DFTurtie DFPrimOpr P DFinputBar

V Turtie

NULL

\Y

name
{ 200 200 }

location
0

\Y

heading
{11}

taliWidth
*Black"

V

trailColor
TRUE

\vi

Trall On?

@Turtle

input: turtle
output:turtle

pendown Turn on turtie drawing ability.

input: turtle
output:turtle

penup Turmn off turtle drawing ability.

input: turtle

Rl o ore

set up to dracharacteristics.

input: turtle, number (distance)
output:turtle

Draw number-iength line in the
forward direction.

input: turtle, point{V H}
output:turtie
Moves turtle to specified location.

input: turtie, point{V H}
output:turtle

Draw line to specified point.

input: turtle, number(heading)
output:turtle
Update turtle heading to specified
heading.

1 input: turtie, number(degrees)
L- output:turtle

turnrightRotate turtie clockwise

i input: turtie, number(degrees)
Ev_ output:turtie

turnleft Rotate turtie counter-clockwise

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtie/set up to draw 1:1

LIS S LS LSS L /LS SIS I LSS IS LSS LSS 1S

SIS S 1SS S SIS L LSS/ L1 LSS LS

@Turtle/set up to draw 1:1set Pattern 1:1

LA AL SSLISS SIS LSS SIS IS SIS

(Bget pattern]]

L L Ll il

@Turtle/set up to draw 1:1set Pattern 1:1get pattern 1:5

LIS LSLSSS SIS LS SSLSLSS LSS 1SS SIS/ L7S

SIS SSSLS LSS LS LSS 1S SIS LSS S/

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

Turtle/set up to draw 1:1set Pattern 1:1get pattern 2:5

LY LSLSLSS SIS LSS LSS/ AL S/ SIS

LAILSS LSS SS IS 1SS SIS LA S SSS S Y

Turtle/set up to draw 1:1set Pattern 1:1get pattern 3:5

W

Dark GrayE]

SISLSISSS LSS LSS SIS S LS LSS S 7SS S s

@Turtle/set up to draw 1:1set Pattern 1:1get pattern 4:5

LSS L1 LSSISSISIS VLSS LS S1S 1A/ S S

SIS/ LS SS LSS LSS S LSS LSS/ S VSIS S

Turtle/set up to draw 1:1set Pattern 1:1get pattern 5:5

LSS LS SIS S SIS LS SIS SIS SIS LSS/ SY

(L L LD

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtie/penup 1:1

update menu

Turtie/penup 1:1update menu 1:1

UL il

SLSLSSS SIS SS LS LSS SIS IS SIS AL IS IS s

@&3Turtle/pendown 1:1

LY SLSSSSSSS SIS LSS SIS LS SIS S

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtie/pendown 1:1update menu 1:1

YIS SSS LIS LSS /TS LSS LSS/ SIS/

SIS SLLSSISSLS LSS LIS LSS S

@Turtle/turnleft 1:1

turtle degrees

SISLSLSSILSLSS LSS SIS LSS S 1 S s

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@3Turtle/ turnright 1:1

LSSSSLS LS LS SS LSS S LSS SIS S /SIS S/ SY

SIS SLSLSLLSS LS SSLISS LSS LSS LSSV

@Turtie/turnto 1:1

7777777777 7277777773
desired heading

SIS/SSS LSS S LSS SIS LSS SSS S LS SIS S

@Turtle/goto 1:1

A SSS SIS TS LSS LSS S SSSSSSSI SIS/

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtle/ forward 1:6

LYLSS IS S 1L LSS SIS ALISS LSS S SIS IS S LSA SIS/ ISS
turtie g X

% -
draw line?

[Eset new Iocatioan]

@Turtie/ forward 2:6

et int location

[Zs:et new Iocationa]

L

R

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtle/ forward 3:6

SISSIL/ L1 LSLIS LSS S SIS LISS SIS SIS

et int location

[E_onven to radiansq]

[E perform trig functlonsj]

V4

u 4 . L) L) - L)
[Eset new Iocationa] | fdraw_line?] '

B

@Turtle/forward 4:6

b

[Eset new Iocationa-] l l

New Turtle Graphics

Thu, Aug 27, 1992 12:37 PM

@Turtle/forward 5:6

SIS S S S SIS LSS S AL SIS
turtie \

% /torwar ¥

LSS SIS 1SS LSS SI SIS SIS LSS SIS

Turtle/forward 6:6

LIS SSSSSS LIS S LSS SSS S ILS S LSS/ S SS

-
LIS ALALAS SIS 1SS LSS SIS LSS VSIS o

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

Turtle/vorivard 1:6quadrant? 1:1

Ll iriiiiiildd

SIASSSSSS LSS LSS AL S 1SS 1SS,

@ZTurtle/forward 1:6convert to radians 1:1

L L Ll il s

SIS LSS LSLS LSS LS SIS LLLS S 1SS 1SS s

@Turtle/forward 1:6perform trig functions 1:1

SIS SIS LIS SSSS LSS LS LSS LSS LSS SIS

L] (]
L L Ll

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@ATurtie/forward 1:6get int location 1:1

L LI Ll i s

SSSSSSALSLS LIS LSS SIS SSSISSS LSS 1SS s

Turtle/forward 1:6determine destination point 1:1

L L Ll U L s

SIS LLSSS LS LSS S S LS LSS S LSS

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

QTurtle/forward 1:6draw line? 1:2

LIS LSS LSLILI LS LSS LSS 1SS SISV

LLLSILS LSS LSS LSS SIS /1SS 1Y

@Turtle/forward 1:6draw line? 2:2

LY JSSSSLSSSSSSSLS SIS LSS S LS LSS ST

QL il

@Turtle/forward 2:6quadrant? 1:1

LIS TSV SSSSS LS SLS 1SS 1SS SIS

L L UL D

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtle/forward 2:6get int location 1:1

UL L LS

SISLSLSSSSS LS LSSISSS S S LA LS SISV S S

Turtle/forward 2:6convert to radians 1:1

LSS IS LS LIS LS LSS S SSSILS LSS 1SS

3.141592654

SSSSSS LS LSSILSS LSS LS LSS S SIS SSS S .

@Turtle/forward 2:6perform trig functions 1:1

LISLS LSS SS LS LS LS LS SIS SIS SIS 1SS

LILLSSSSSSSLSLSSISS LSS S LSS LSS 1SS s

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

Turtle/forward 2:6determine destination point 1:1

LIS SSSSS LSS LSS LSS LSS LSS IS

. .
LSS LSS LSS LSS AL LI LSS LSS 1SS

@Turtle/forward 2:6set new location 1:1

L L LU s

Turtle/forward 2:6draw line? 1:2

IS SS LS LIS LS LSS 1SS LSS IS

(Ul L dd)

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

Turtle/forward 2:6draw line? 2:2

LSS SSLS LSS LSS S LSS S LSS IS

SLSLSLS LSS SSSSS LSS LS LS SIS SIS SIS s

@Turtle/forward 3:6quadrant? 1:1

SIS SSSSS LSS LSS S LSS LSS SS LSS ST

SLSLLS LIS LSS S LS LSS IS SSSS LSS S

ETurtle/ forward 3:6convert to radians 1:1

LSS SIS LSSV LS LSS LIS 1SS SS S/ S/ S 1SS

3.141592654
N o)

SISSSSSSSLSLS SIS 1L SIS LSS S A

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtile/forward 3:6perform trig functions 1:1

LSS LSS LSSV SSLS LS LSS SIS LSS LSL S

SSSSILSLS SIS L1S 1SS LSSLS 1L SIS/ S

@2turtie/forward 3:6get int location 1:1

TISLISISILSS IS LSS SIS/

turtle

SIILSLSSSISSLILSSSSSSS S SIS ISV S S

EZTurtle/forward 3:6determine destination point 1:1

THSSSSSSIS LSS LSS SIS LSS IS S SIS S

QUL L LU Ll D

New Turtle Graphics Thu, Aug 27, 1992 12.37 PM

@Turtle/forward 3:6set new location 1:1

LSS LSS LS LS LSS LSS LSS LS LSS

@nts--plng

E

SSLLSLILLLSLS LSS SIS S STSS LSS SIS s

@Turtle/forward 3:6draw line? 1:2

VLSS S LS LSLS LSS S SIS SLS LSS AL

SIS LSS LSS SISIS LSS SIS LSS SI LS.

@Turtle/forward 3:6draw line? 2:2

LI1S LS LSS SIS LSS LSS SIS/

SSSSILILSSSISSILSSS LI LS SIS SIS ST s

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

ETurtle/forward 4:6quadrant? 1:1

LIS S LSS LSS LSS LSS LSS AL LSS AL 1SS

L]
SISLSLS LS LSS LS LSS LS LSS/ SSS 177

@Turtle/ forward 4:6convert to radians 1:1

L L L s

SIS SIS ST S LSS IS SSSS S S SIS S S TS TS s

@Turtie/forward 4:6perform trig functions 1:1

UL L L i

. L)
SIILILTSILSLI LIS LSS SIS SSL LSS SIS s

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtle/ forward 4:6get int location 1:1

777777 777777777 73

LSS SSLS LSS LSS 1SS/ SYY .

@3Turtle/forward 4:6determine destination point 1:1

AL SSSSSSISSS 1SS LSS LSSV S S 1SSV

@Turtle/ forward 4:6set new location 1:1

L L L L S
* LJ L)

SIVSSSS S 1A SISS LSS SLSSS LSS LI TIST S s

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@Turtle/forward 4:6draw line? 1:2

AISSSLSLSSSSSLILSLS LSS SIS 1SS LSSV

SSSLILSLS LSS LS LSS 1S 1L S LSS LSS SIS s

@Turtle/forward 4:6draw line? 2:2

AY I SSSSLSS LSS L1 LI LSS LS SIS IS LS SIS

SSISISILSSS IS LLSS LS L LSS LSS 1SS s

@3Turtle/drawto 1:1

LI SSSLISISS SIS LS LSS LSS SIS SIS/

L U L

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

@pTurtle/rectangle 1:1do rectangle 1:1

LIS SALSLILSLS LSS LISV LSS S IS/

.
SSLSSS LS SSSSSS AL LS LSS S STV s

@pTurtie/rectangle 1:1do rectangle 1:1doRect 1:1draw it 1:1

L UL L L il

turtle 90 1
—
degrees

of times

EdosidesTurd)

SISSS LA LS LSS LSS SSISLS LS SSSS SIS S s

New Turtle Graphics Thu, Aug 27, 1992 12:F_ PM

@pTurtie/triangle 1:1

LIS SIS LSS S LS LSS SIS SIS SIS S
turtie

Nr. of
triangles

SSSLS LS LS LSS SIS S LTSS SV

@pTurtie/square 1:1

LIS SIS S LS LSS SLSS LSS SIS SIS LS SSSSSS ST
&/ U s

Turtle
Nr. of

objects

SISSILSLSLSSLSSSSLS LSS L/ LSS Y,

@pTurtie/doSide&Turn 1:2

K LS LIS LSS S SIS IS LSS LIS AL SIS IS S
o Y " 0 # of times

oty Ay y— e e——————etm——n

\ NI I

SSSLSS LSS LSS LS SS LSS LS SIS LSS S SV s

Y/

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

V pTurtle

canvas pad

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

®l)pTurtie

input: turtle, number(side length), number(nr. of sides),
number(nr. of polygons to draw)
polygon output: turtle

output: turtle

@ input: turtie, number(radius), number(nr. of circles to draw)
circle

input: turtie, number(side length), number(nr. of squares to draw)
output: turtie

square

ij} input: turtle, number(side length), number(side length),
L- . number(nr. of rectangles to draw)
rectangleoutput: turtie

input: turtie, number(side length), number(nr. of triangles to draw)
output: turtie

triangle

-:[ﬂ] input: turtie, number(side length), number{degrees to turn)
&' output: turtie

doSide&Turn

@BpTurtie/rectangle 1:1

77777778
Turtle

SISLISLSSIS LSS LSS SIS LSS 1SS TS s

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

@pTurtie/doSide&Turn 2:2

SIALS LS LS LSS LSS LSS 1SS LSS L LSS SS Y s

@pTurtie/doSide&Turn 1:2do it left 1:1

LSS A LIS LSS LSS LSS/ LSS/

turtie dist. degrees

SLLISST1LSSSSS LS LS LSS LI LSS SIS SIS .

@pTurtie/doSide&Turn 2:2do it right 1:1

L i e

LLSSSSL LS LSS SIS SS SIS IS IS SIS SIS S

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

@pTurtie/polygon 1:1

LSS LSS LA LS LSS LSS LSS LSS LSS S11S

turtle

[LU D

@pTurtie/polygon 1:1do polygon 1:1

PSS SSLSLSSS LSS 1SS LSS LS LIS A SIS1SYS

turtle

—_— .:':L:O:'
| D
. &/

SI/SSLSLISSS LSS 1SS SIS SIS S S /TS

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

@2pTurtie/polygon 1:1do polygon 1:1doPoly 1:1dopolyside&turn 1:1

LSS LSS LSS L OLSS S LIS LS LSS/ SS T

SISLS LS LSS LSS LS LSS LSS SIS

@pTurtie/circle 1:1

LSS LIS LS SLS LTSS ST LS LSS L1/ 1S

turtie
Nr. of

objects

[Ll Ll L d

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

V Turtielin

*Turtle Disp...

name
NULL

\

owner
FALSE

v

active?
NULL

v

window record
8

v

det ID
FALSE

\/

modal?
FALSE

v

close?
NULL

\4

selected item
{425}

location
{ 250 250 }

slze

\

activate method

\//

close method

v

idie method

v

key method
()

item list

Q)

turties
New Turtle Graphics Thu, Aug 27, 1992 1:03 PM

»

@Turtielin

print d

-

=]

o

&)

%

-

]

[-"‘

-
c
-y
3

input: window, window item, event record
output: none
Prints the display graphics window.

awin.

input: window, window item, event record
output: none
Retumns to the Manipulation Window

input: window, window item, event record
output: none
Removes a turtle object from the menu.

input: menu, menu item, event record
output: none
Opens the Turtle Definition window for editing

New Turtle Graphics Thu, Aug 27, 1992 1:05 PM

@Turtielin/Delete 1:1who goes? 1:1

LIT SIS S LSS LLLS SIS LSS SIS LS LSS LS

Application

SLSSSSILSLSLSLSSSSSS LSS LS LSS ST .

§1. Turtle Display

ETurtiellin/Delete 1:1delete from menu 1:1

UL Ll s

Turties

LU L L

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

@Turtiellin/Delete 1:1who goes? 1:1pick who goes 1:1

SISSSLILS LSS SS LSS 1SS SIS TS

§1. Which turtie do you want to delete?

2TurtlelWin/Delete 1:1who goes? 1:1kill it 1:1

LSS IS LSS SIS IS SIS SIS S 11/ 1SS

SIS LSS LSS LS SIS ST ILS LSS LSS 1SS IS

@2Turtlein/Delete 1:1delete from menu 1:1delete item 1:2

LY SSS LSS SSSL SIS SSS IS LSS L1SSSIS LSS

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

Turtiein/Delete 1:1delete from menu 1:1delete item 2:2

LIS SLS LTSS LSS LSS SSS LSS /SIS 1S 1SS,

SISSISSLSSS LSS SIS AL SIS LSS/ F /S

Turtlelin/edit 1:1

YIS LS LS SSLS LSS LSS LS LSS S LS LISSSS

[%open Maker windowm

SISLSSSLS LSS IS SISS LSS LSS LSS LSS s

TurtleWin/edit 1:1find turtie 1:1

SIS LILSSSLSSSS 1SS LLL LSS L1 S /1S 1SS

§1. Turtie Display

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

@Turtiellin/edit 1:10pen Maker window 1:1

inst-to-lis

(o]
[gopen p/T Maker windowﬂ

SSSSILSLS SIS SIS LSS S LIS SSSS LSS SIS o

@ZTurtielin/edit 1:1open Maker window 1:1open p/T Maker window 1:1

Application

Turtle Maker
—_—

\r—

Zﬂnd-wlndoﬁ’

Item lis

Z./set

SISSVSSL1S LSS/ LSLS LSS ILS SIS IS SIS S S

New Turtie Graphics Thu, Aug 27, 1992 12:58 PM

E1urtleWin/edit 1:1open Maker window 1:1open p/T Maker window 1:1name oftf & select location 1:1

SLILSLSLSSS LSS LS SIS S SS LIS LIS IS s

@TurtleWin/print drawing 1:1

27777777 7 7773
Event Record

Window item

TRUE

SIISSSS LSS SLSSALISS SIS SIS VSIS LY

§1. Turtie Graphics Display Window!

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

TurtleWin/return 1:1

LISSS LS LS LSS SIS SIS/ SIS IS IS 1SS/

§1

find-instanc

<Window>
%IBrlﬂ To Fronﬂ

SSSLSLSSS LSS SISS IS SLS LSS S SSSS LS SISSS .

§1. Manipulation Window

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

V TurtieMaker

"Turtle Make...

v

name
NULL

v

owner
FALSE

v

active?
NULL

v

window record
4

v

def 1D
FALSE

\Y4

modal?
TRUE

v

close?
NULL

v

selected Iitem
{ 40 106 }

focation
{ 282 200 }

v

activate method

"/close"”

close method

v

idle method

v

key method

(<<Text>> <...

item list

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

@ TurtieMaker

input: TurtieMaker window, window item, event record
output: none
Initiates turtle creation for new turtles.

input: TurtleMaker window, pTurtle ﬂi‘) input: TurtleMaker window, window item, event record
output: none ' By output: none N

Sets the attribute values upon opening OKedit Initiates turtie attribute definition update.

set item lisTurtleMaker window of defined turtie.

rgll input: TurtieMaker window, window item, event record

output: none
close Brings main Manipulation window to front.

input: TurtleMaker window

_: 7‘—.——1
1‘1 input: menu, menu item, event record ‘g) output:
L‘“ output: none LA / Establishes list of turtie attributes.

openMake; Opens the TurtleMaker window Prep Attribute list

@ZTurtieMaker/close 1:1

UL O 777 7 7777077

@ng-wlnd;w-ﬁ

<Window>
g

alarlng To Frong

2272 727727777772

§1. Manipulation Window

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

TurtleMaker/0K 1:1

LSS LSS LSS SIS LSS LSS LSS/ S 1S

Vliprep Attribute li&g

[Eake‘the turtlei]

d//close
LSS LSS LS LSS LSS S S SIS SIS SIS S LSS SIS

ETurtieMaker/0K 1:1make the turtle 1:1

SIS LS LSS/ LSS LAS SIS S LIS 1SS LSS LSS
d

A .

[ladd it to the window & menul]

Pl L L L L)

&TurtleMaker/0K 1:1make the turtle 1:1add it to the window & menu 1:1

SIS LSS S LS LSS SSSS LSS SS S

SLSSSSLLLLSSSSS LSS SL LSS LS LSS/

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

TunleMaker/OK 1:1make the turtie 1:1add it to the window & menu 1:1add to window 1:1

find-window-

SIS LSS LS SIS/ LSS SSS LSS/]

§1. Turtle Display

TurtleMaker/OK 1:1make the turtle 1:1add it to the window & menu 1:1add t menu 1:1

LILI LSS SS LS LSS L1 S SS LSS/ SS S/ S7 S

Turties

SISSSLSSSSS LSS LSS LSS LSS LSS SV s

New Turtie Graphics Thu, Aug 27, 1992 1:07 PM

TunleMakar/OK 1:1make the turtle 1:1add it to the window & menu 1:1add to menu 1:1make menu item 1:1

SISSILSLA LSS L1 LSS SIS LS LSS/

§1. (method "TurtieWin/edit")

TurtieMaker/0Kedit 1:1

. N

Erep Attribute ll'

\new ;
lEugdate the turtle & menuj}: llclos

LIS LLLSSSLSSSSSS LSS AL LSS/

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

@TurtieMaker/0Kedit 1:1update the turtie & menu 1:1

AL LSS ST LSS LSS S S S AL 1SS 1SS SIS
-

SLSLTLILS LSS SIS L1 LSS LSS

@TurtieMaker/0Kedit 1:1update the turtie & menu 1:1get turties attribute & menu 1:1

IS SSSS LS LS SILILSSS SIS 1SS S/ S/

Turties

SLLLSS1 LSS S LLLS S LSS 1SS LV

§1. Turtle Display

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

ATurtieMaker/0Kedit 1:1update the turtle & menu 1:1update turtle 1:2

AYIL ST LSS LSS LSS LIS LSS

SIS LISLS LSS LSS LALSLSS LSS SIS 7.

@TurtleMaker/0Kedit 1:1update the turtie & menu 1:1update turtie 2:2

LSS LSS LSS 1SLSSLSSSSSS SIS 1SS

7 27 7

ZTurtleMaker/0Kedit 1:1update the turtie & menu 1:1update menu 1:1

L L G Ll (S

LIVLILS LSS SISS LSS LS LSS LSS SI LSS s

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

TurtIeMaker/OKedh 1:1update the turtie & menu 1:1update turtie 1:2update attributes 1:1

LY/ SISS LSS LSS LSS 1L LSS ALY

SLSLSISSLSSSSSLSLS LSS LSS LS 1SS LSS s

@TurtieMaker/prep Attribute list 1:1

UL L L L dildd

()

prep Attribute Value list
(%]

§1. (name location heading taiiWidth trailColor “Trail On?")

ETurtieMaker/prep Rttribute list 1:1prep Attribute Value list 1:7

LU L s

SLILSLISL LS LSS VLS LSS LSS 1S,

New Turtie Graphics Thu, Aug 27, 1992 1:08 PM

program from-strin
—_—— u

f L L

@TurtleMaker/prep Attribute list 1:1prep Attribute Dalue list 3:7

YIS LSS LSS LSS SIS S LS LS LSS/

location

SIILSSS LSS LS LSS LSS 1SS PSS LSS LSSV

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

\

@ATurtieMaker/prep Attribute list 1:1prep Attribute Value list 4:7

LI LSLSS LSS LSS LS LSS LS LS SSSSS S SV

SLLSSS LSS S/ SIS LSS LSS LSSV s

@TurtieMaker/prep Attribute list 1:1prep Attribute Value list 5:7

L L s

SLSLISSLSLSLISSISSS LS SS SIS LSS S ST

New Turtle Grapl.cs Thu, Aug 27, 1992 1:08 PM

ETurtleMaker/prep Attribute list 1:1prep Attribute Value list 6:7

LYSSSSS LS LSS LSS LSS S S SIS LSS LSS

trailColor

SISSLS SIS LI SSLS SIS S LSS S/ S 1SS

@TurtleMaker/prep Attribute list 1:1prep Attribute Value list 7:7

TS SLISS SIS LSS LILSSISS LSS 1SSV S17

"Trall On?"

SISSLSSSLSLS LS LSIS S LSS LSS S 1S

@TurtieMaker/prep Attribute list 1:1prep Attribute Value list 5:7make point 1:1

tfrom-string
ints-to-poin

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

@2TurtleMaker/set item list 1:1

LSS LSS SSS TS/ SIS IS LSS LSS SIS TS

> —)
I set items
LIISIL1LISS LIS/ SIS LIS I LSS LSS 11177

§1. (OK name location heading tailWidth trailColor “Trail On?")

TurtleMaker/set item list 1:1set items 1:2

AL SSS SIS SIS SIS LSS LS LS LSS SSS

[lset text or value l |

SIVSSLSLSSSSSSS S SSLS LSS LSS LSS/ 7

ETurtleMaker/set item list 1:1set items 2:2

/OKedit

&click method]
[~}

(LU L LU D

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

TurtleMaker/set item list 1:1set items 1:2set text or value 1:4

LSS S LS LS SISIL S LS LSS SIS SSSSS IS SS S

SLISSLSLSSSLSLSLSLSLSLSSSSSS SIS VLS s

@TurtleMaker/set item list 1:1set items 1:2set text or value 2:4

UL L ULl S

LS SSSSLSL LSS SSLI LSS S LS LSS/

TurtleMaker/set item list 1:1set items 1:2set text or value 3:4

AYSSS LSS LSS S SIS LILS LSS S LSS SS LSS

Fset_text]

Radio Sefv|

HISLSLSSSSSS LSS LS LSS SIS SIS VSIS S s

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

@TurtieMaker/set item list 1:1set items 1:2set text or value 4:4

TSI LS LSS LSS LS 1SS LSS AL SIS LSS

SISSSSS LSS SSLSLS LS LSS S LSS LSS S

ETurtieMaker/set item list 1:1set items 1:2set tesxt or value 1:4reduce 1:2

SLSLS LSS LS LSS LSSSS AL LSS S /7.

TurtleMaker/set item list 1:1set items 1:2set text or value 1:4reduce 2:2

1S LSS S S S LSS SIS 1TSS

SIISSLS LS LSS LA LILSLS SIS S LSS LTS 7S.

@2TurtleMaker/set item list 1:1set items 1:2set text or value 3:4set text 1:3

QLA L L s

SSISSSS LSS SIS LS LSS/ LSS 1SS LS LSS s

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

@TurtleMaker/set item list 1:1set items 1:2set text or value 3:4set text 2:3

SIS S LIS LSS LSS AL SIS SIS S LI LSS

TurtleMaker/set item list 1:1set items 1:2set text or value 3:4set text 3:3

TISSSLS LSS LSS LAS LSS LSS LSS S7S

SLSLSLS LS LSLLSS SIS LS SIS S LSS 1SS

LUl ddd

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

DTurtieMaker/set item list 1:1set items 1:2set text or value 4:4set value 2:2

LI SLILS LS LIS LS LSS LSS S L1

polnt-to-lnta
- o

[i dd

@ATurtieMaker/openMaker 1:1

removed //update menus

[Egpen Turtle mak;ra]

SIILLSS LSS S LS SILL LS LSS LSS 1SS S s

@ZTurtleMaker/openMaker t:1open Turtle maker 1:2

LU L il s

Turtle Maker

——T

Zflnd-wlndoﬁ'

[Felec::me tield] |

<Window>

[Eglgar itemm ZIBrlng To Fronﬂ

[Ll lddd

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

TurtleMaker/openMaker 1:1open Turtle maker 2:2

A IR0

Application

Turtle Maker

SIS LSLSLS LSS LIS LSS LSS SIS SIS 1S

@ATurtieMaker/openMaker 1:1open Turtle maker 1:2clear items 1:1

LIS SLLS LSS LSS 1SS LSS LSS LSS/ S

il dididdd

§1. (tailWidth trailColor)
§2. (name location heading)

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

@TurtleMaker/openMaker 1:1open Turtle maker 1:2select name field 1:1

L s

@olctood toua

SLSLSLA LS LSS LS SIS IS S LSS SIS S

TurtieMaker/openMaker 1:1open Turtie maker 2:2clear items 1:1

LSS SIS SSSSLS LIS LSS IS SIS LSS

[L Ll D

§1. (tailWidth trailColor)
§2. (name program location heading)

@TurtieMaker/openMaker 1:1open Turtle maker 2:2select name field 1:1

L LU Ll s

Qoolctood teﬁ

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

V DFobject

NULL <Root> object

\Y

root
{ 0 0 20 0 location of its body

bodyRect
NULL

4

rootValue
FALSE

\Y

selected?

@)DFobject

move it to the
new location

i ﬂ private: create <Root>
(&>l and attach it

get root

private: computer return rectangle
center of its body rect coordinates for
root

bodyRect center
invert get root rect

@20F0b ject/get root rect 1:1

e

.lbodzRect ccnte.

center point

(12 0}
{12 9}

/////////////////;/////////////////A
New Turtle Graphics Thu, Aug 27, 1992 1:21 PM

E20F0bject/get root 1:1

<self>

@Elget root recf]

may need to skip this /9
for inputand output bers

LLILILS LS L1SLL S S/ S/ SIS S/ 77.

enrobject/invert 1:2

LSS S LILISS LIS LT LILSSSSS LSS LSS

alnvortnoundnoc
SIS IS LIS LA LSS SIS IS IS 1SS SIS IS,

E&Z20F0bject/invert 2:2

[/ A A A

SSASS LSS LSS SSLSSSSSS 1SS LS LS LSS LSS S s

New Turtle Graphics Thu, Aug 27, 1992 1:21 PM

EZ0F0b ject/bodyRect center 1:1

LIS/ LS LSS SIS LS LS LSS ST

YbodyRec 7,

Calculates the center point (horiz)
of input rectangle.

Ints-to-polnz

center point

@20F0b ject/move to 1:1

Ll s

oA

net root recy

[l ddd

New Turtle Graphics Thu, Aug 27, 1992 1:21 PM

@Z0Fabject/toggle 1:1

LIS LSS LS LSS LSS LSLS SIS SIS 1L/

SLSLISSSSLS LS LSS S SIS LSS SIS LSS LSS,

New Turtle Graphics Thu, Aug 27, 1982 1:21 PM

V DFOperator

NULL <Root> object

v

root
{ 0 0 20 O location of its body

bodyRect
NULL

M

rootValue
FALSE

\

selected?

\Y

oprname

() list of <Terminal>
\7 --((termrect fromObjinstnum) ..)

terminals

@)DFOperator

1]1 returns terminals =)
S \ private: return the number
E connected to object FEJW of terminals for itself

get terminals

get terminals cnt

init itself =
ﬂ draw itself on the
il currently “sc-begin”
draw canvas

private: return

a list of rects Fe_]ﬂ Initialize canvas and pen

for its terminals characteristics.

get terminal rects init draw
displays info ' i
@ P rg End drawing routine.
remove show info end draw
allows objects to be ~
@ around In window fj] translates/executes program
move to transiate

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@0F0perator/init draw 1:1

%cc-b'eiln-duwlnz

L1
) JJJ)
)
2>
ALY

%Turtlelset up to draa

@Q0F0perator/transiate 1:5

VYIS LSS LIS LS S LLS 1SS ST S 1SS ST

<self>

not nuil, so
operation is
already defined,
just return it

SISS LSS LSS LIS SIS LSS 1SS/ LSS LSS s

New Turtle Graphics

Thu, Aug 27, 1992 1:31 PM

EZ0F0perator/transiate 2:5

LSS SIS SIS SIS LS LS LIS SIS LSS

no operation is attached yet
so compute operation for
this operator by recursively
calling translate to the
terminais

detach turtie/open window2] (length
do processin
/rootValu returns operation object

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@0DF0perator/translate 3:5

LSS LSS LSS SIS SSSS LIS LS LS LSS LS (LIS LSS 1SS LSS IS S/ IS 1S

SISSVLSLSS LSS SS LS LSS LSS SIS/,

EZDF0perator/translate 4:5

YY1 LSS LSS LSS LIS LSS LSS 1S/

L - 32322,
333333333332
DFUsrOpr lJr) 2

[«]
éDFEvaluato@
[o T

%mnd starting ptz

72277072 21

New Turtie Graphics

Thu, Aug 27, 1992 1:31 PM

@Z2DF0perator/transiate 5:5

<self>
&

[Eget operator objects i]

\II. o ——————
I’// get list of objects 7/

Nl S

o]
QDFEvnluato@

‘Ereset root connectionsi]

(4
[243
(A3
\ (cc"‘c’ {<
(4
prais

%Iﬂnd starting ////////////.////

Need to reset all objects from the original definition
back to connecting to the input and output objects.

Operator must be a user defined operator. This method needs

further testing and modification to allow user to reuse new operator
with new input values. Also need to be able to use the turtie coming
out of the ne operator.

I

@20F0perator/translate 2:5connected DFObjects 1:1

/lconnectedT
[+] (--.)

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

Z0F0perator/translate 2:5get opr name 1:2

LY 1SS LSS LS LSS LSS S S S S ST

SLSLSLLSS LSS SIS LSSV LS LSS 1SS 1SS

§1. ("forward" “turnleft® “turnright” “turnto" “goto” “"penup" “pendown”)

@20F0perator/translate 2:5get opr name 2:2

UL L L i s

UL L L D

@20F0perator/translate 2:5detach turtle/open window 1:1

LI YL S SIS LIS LS LS SIS SIS SIS S S S S S S S TS

<Window>
Z /Bring To Fro nﬂ

SIS LSS AL LA LSS S S S S S 7SS S SV

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

Z0F0perator/transiate 2:5do processing 1:1

LS SLSLS LS LSS LS LSS LSS LSS SIS

Zllend dra

@0F0perator/translate 3:5connected DFObjects 1:1

E20F0perator/transiate 3:5get opr name 1:2

VIS LLLS SIS 1LS LSS LS SS L SIS/

EIIIIL 111 IIL I IL SI I I ISP I,
New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@DF0perator/transiate 3:5get opr name 1:2

§1. (“torward” “turnleft” “turnright® “turnto” °“goto” “penup” “pendown")

@A0F0perator/transiate 3:5get opr name 2:2

L (AL s

SIILSL 1SS ST SIS LSS LSS 1SSV

EZ20F0perator/translate 3:5detach turtie/open window 1:1

L (L il i

<Window>
%IBrInL To Fronﬂ

SSSLLLSSSSSSSSSS LS LSS SS 1SS LSS,

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

&Z0F0perator/translate 3:5do processing 1:1

Ll Ll f LUl

E0F0perator/translate 4:5reset 1:2

YIS AISLSS IS LSS SSSASS LS LSS LSS

SL1LSLLLS LSS SIL LS 1SS LSS/ S/,

@20F0perator/translate 4:5reset 2:2

222272222l D

SIS LS LSS S AL 1L S S LSS/ /SYY .

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@20F0perator/translate S:Sconnected DFObjects 1:1

?Iconnected'r@

5 €9

@0rF0perator/transliate S5:5get operator objects 1:1

[l L Ll didddd

@20F0perator/transiate 5:5get list of objects 1:1

ALSLS LS LA LS SISAS SIS S LSS LSS

///////////}///////////////}///////.//1,
New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@0F0perator/transiate 5:5detach non-inputbar objects 1:1

LSS LSS SLSLSLSLS LS SIS LS LIS LSS LSS

K remove_them]

LJ .
SIS LLSLS LSS S SS LS LTSS LIS LSS LSS

EZ20DF0perator/transiate 5:Sreset terminal connections 1:1

ALY LSS LI SS LI LSLSLI LS LSS LS SS LSS ST TSI LIS SIS SIS S
inputbar
userop list parameter

object list list

inputbar
tist

param list

object list
T 4

resolve object connections

.

L U)

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

&ZDF0perator/transiate 5:5reset root connections 1:1

LSS LS LS LSS AL S S 1SS LSS LSS S

conncctodea

L
SLLLSLTLSLSLS LSS LSS LS LS LSS S ALY

@20F0perator/translate 5:5reset 1:2

LSS LSS LS LS LIS SIS SIS IS LSS/ LSS ST

SLYLSLLSSL1LSLSSSSLS /SIS LSS

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

&Z0F0perator/transiate S:5reset 2:2

22 Tl I 277D

SIILILS LS LSS LSS LI LS LSS/ SAA I Y.

@DFoperator/transiate 2:5do processing 1:1process the operator 1:4

LLSSSLILS LSS LS LS LSS LS 1SSV

SIASSSSLSLSLSL LSS LSS LS LSS LS.

@Z0FOperator/translate 2:5do processing 1:1process the operator 2:4

TS/ LS IS LSS LSS/ LSS LSSV S /S

LLILLLSLSLIL LSS LTSS S /S SIS 1LY

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@2DF Operator/translate 2:5do processing 1:1process the operator 3:4

TSI SIS LSS LSS LSS LSS /SIS LA

operation

f e i

@ZDF0perator/translate 2:5do processing 1:1process the operator 4:4

LS LSS LS LS LSS LS LS AL S S LSS

four terminals

operation

. D) . D)

D 7277 7727277

LASLI LS LSS LSS LSS LS LSS LSS S S o

@20F0perator/translate 3:5do processing 1:1process the operator 1:4

L Ll Ll s

0 7077

LSSSII/ LSS SIS SIS 1LY s

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

EZ0FOperator/translate 3:5do processing 1:1process the operator 2:4

G

SLLLSSSLILALSLSSISLS LSS LSS SIS S

@20FOperator/translate 3:5do processing 1:1process the operator 3:4

LUl (il s

operation

%%.

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@DFOperator/translate 3:5do processing 1:1process the operator 4:4

UL Ll Ul 7S

four terminals

operation

U222 7%

SISLLSSLSLS LSS LSS L /LSS SIS LSS Y

EA0FOperator/translate 5:5detach non-inputbar objects 1:1remove them 1:1

LSS AL LSS LSS LS LSS LSS 1SS/ 7117

DFOperator/translate 5:5reset terminal connections 1:1resolve object connections 1:1

LAY LSS LSS LSS LS LSS S LSS SIS IS LS/

LLVLSLSLSLILSL VLSS LI LSS SIS LSS

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

DFOparator/transIate 5:5reset terminal connections 1:1resolve object connactions 1:1varify terminal connection 1:2

LIS LSS LSS LS SIS LSS S LSS SIS SIS S
» -

Zty pe%

DFInputBan

7

0

@conooctod@

222711212 SIS I

L

DFOperatomranslate 5:5reset terminal connections 1:1resolve object connections 1:1verify terminal connection 2:2

2l r77d

New Turtle Graphics Thu, Aug 27, 1992 1:3t1 PM

%EFOporatomnnslate 5:5reset terminal connections 1:1resolve object connections 1:1verify terminal connection 1:2get in
put param 1:1

L L L il dd

LIILSLSSS LSS SIS SIS 1SS LSS/ /17

@2DfOperator/get terminals 1:1

SIS S S SIS LSS LS SS SIS S LS S 1SS S SIS

¢\

—— g\ ——
I create tarmina
& ©

'det ter7rr!|nal roﬂ

list of rects

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

- o

&ZDFoperator/get terminals 1:1create terminals 1:1

SISV SILS LSS ST LSS LSS LSS LSS

. L
LSS SIS/ LSLSLSLSS LSS LSS LSS SIS S

@2DF0perator/init 1:1

CASSS LSS SSSLLT LTSS LS LS LSS LS LSS LSS S LSS LSS LS LS LSS LSS S S S S S S 1S AS

text

terminals

SLLLILSSSLS S LS LSSS SIS S LSS L1 SIS s

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

EZ0F0perator/init 1:1set bodyRect 1:3

LSS S LS LSSV LSS SIS AL SIS/
L \J

D 872
DFinputBar

DFOutputBar

N

&bodyRec /,

SISLS LSS LS LS LSS LSS 1SS LSSS S S/

@20F0perator/init 1:1set bodyRect 2:3

TISLSLSLSSS LSS SLSSISS LSS S 1SS SV S S

DFOutputBarLJ_]

doinputbar case

@20F0perator/init 1:1set bodyRect 3:3

W

must be outputbar

N

&bodyRec /,

//////////////////'/////////////////A

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

EZ0F0perator/init 1:1set bodyRect 3:3

§1. {200 100 210 400}

E20DF0perator/init 1:1set bodyRect 2:3doinputbar case 1:1

TSSSS SIS LSS LIS LSS LSS/ LSS

SISLSLSLS LS SSS LSS IS SS S S/ 7SS 7.

@20F0perator/get terminals cnt 1:8

L Ll ALl s

text

DFOutputBarE]

New Turtie Graphics Thu, Aug 27, 1992 1:31 PM

@ADF0perator/get terminals cnt 2:8

text

DFInputBar[’_ﬂ

1

W

E2DrF0perator/get terminals cnt 3:8

LSS SS SIS S S LLSSSS LSS S S S S

§1. ("penup” “pendown”)

@20F0perator/get terminals cnt 4:8

SISLSSS SIS LIS LSS S VLTSS SIS SIS/

text

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

@0FOperator/get terminals cnt 4:8

§1. (“forward”™ "turnright” “turnieft* “turnto” “goto® “drawto®)

@Z20F0perator/get terminals cnt 5:8

LSS SS S LS LS SILIL LSS 1SS S S LSS 1SS/

text

§1. ("square” “triangle” "circle")

@2DF0perator/get terminals cnt 6:8

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

&DFOperator/get terminals cnt 7:8

LSS LTSI L LS LSS LSV S LSS 1SS

SLLLILI LSS LSS LSS 1SS/ S7 S

@ZDF0perator/get terminals cnt 8:8

(A A A

S —

@2DF0perator/get terminals cnt 6:8DFprogram? 1:2

VLILSLS LSS LS VLS LIS SIS TS VSIS SIS

TRUE

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

&DF0perator/get terminals cnt 6:80Fprogram? 2:2

L

text

NULL B

EA0F0perator/get terminals cnt 7:8set info 1:1

LSS LSS LIS LTSS LSS LSS LIS LSS LSS

user object

[

@termlnal

cou@

SIS LS LIS S LSS 1SS SS S SIS

@2DF0perator/get terminals cnt 6:8DFprogram? 1:2is it here? and where? 1:2

Ll il ldds

LI III 12T ISP III I ST I IIIPIY,
New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

@ADF0perator/get terminals cnt 6:8DFprogram? 1:2is it here? and where? 2:2

LSS LIS LSS LI LS LIS LSS LSS

SLILSLI LS LS LSS SIS LSS LSS S S 1SS SIS

&0F0perator/draw 1:2

-3 <solt> z@b

PenSize

233, DFProgrnm(i]

Y/

[Edraw terminalsﬂ

line is also drawn
if terminal has one

SIVSSSSLSLS SIS SSLS LSS IS SIS SIS/

New Turtie Graphics Thu, Aug 27, 1992 1:32 PM

EZ0F0perator/draw 2:2

PenSize

’:JJ

Earaw boay]

SSSLILSLSSSSSLSLS SIS S S LSS 1SS

@Z0F0perator/draw 1:2draw body 1:1

UL s

10

SN
zF_umeRoundea

SIISILSLSSS LSS/ LIS VS SSS L1 S LSS s

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

&Z20F0perator/draw 1:2draw name 1:1

TLALS LS LSS LSLS LIS 1L LSS IS

LLSLSSSLS LA LSS SIS LIS S S LSS 1S AS LS.

&0F0perator/draw 1:2draw root 1:1

UL Ll i 2l

7777777777, 277777777777 227

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

EZ0F0perator/draw 1:2draw terminals 1:1

LIILS LSS ILS SIS AL LIS SIS LSS S LSS

SISLS LSS LSS LSS LSS LSS LSS LIS LSS s

@2DF0perator/draw 2:2draw body 1:1

S LSS LS SS LSS LSS LSS LS LIS/

(R get_next rect]

ZaneRoundRec

SSSSSS LSS SSSLS SIS IS/ LSS SIS SS Y.

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

&ZFOperator/draw 2:2draw name 1:1

SLSLSLSLSLSLSLSSI LS LSS LSS S LSS LSS S s

&ZDF0perator/draw 2:2draw body 1:1get next rect 1:1

LSS S LSS S LSS LSS LSS SIS LSS

SISSSSSL LSS LSS SS LSS IS S 1SS LSS s

New Turtie Graphics Thu, Aug 27, 1992 1:32 PM

@20F0perator/draw 2:2draw body 1:1get next rect 1:1

LIS LSLISSLSLS LSS IS LS LS LIS SIS 1SS

L)
SLASSSS L LILSLSLS SIS S SIS LS /YY.

@20F0perator/get terminal rects 1:1

LY LSS LSS LSS LSS LSS TS SIS 7SS

<self>

YbodyRect

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

@Z20F0perator/get terminal rects 1:1o0ffset 1:1

LASSILSLSSS SIS LS LSS SIS LSS SSS 1SS

SIISILSLISS LSS AL SSSSS SIS SIS S SIS SIS s

@20F0perator/get terminal rects 1:1starting pt 1:2

UL L L il

52
This may need to be removed.
It is here for the implementation

@_Ints-tO-poLnQ of the input bar for the user
defined primitive.

§1. {10 100 20 400}
§2. {10 100 20 400}

@ZDF0perator/get terminal rects 1:1starting pt 2:2

ints-to-poin

New Turtie Graphics Thu, Aug 27, 1982 1:32 PM

@ZDF0perator/get terminal rects 1:1get rects 1:1

LY S LSS S SRS LSS S/ S S LSS S

SISLS LS LSS SS LS IS S LSS LSS

@2DF0perator/get terminal rects 1:1get rects 1:1get rect 1:2

startPt -2 horiz offset

—r-\u\o
@nts-t-po@

SASSSSS LSS LSS LIS 1SS SIS S 1SSV

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

EZ0DFDperator/get terminal rects 1:1get rects 1:1get rect 2:2

S/ SSLSLSSIL VLSS 1L 1SS S 1L SIS

+2 horiz offset

X
ints-to-poin
N o)

SLILSSSSSS LSS SIS LSS 1S 1SS S SIS 1LY

@20F0perator/move to 1:1

W/,Ilmove t@

also adjust terminais
because it is operator

Z(length)Z
Zl_get terminal recta

i/move to

SLSSLLSLSLSS LSS LSS TS SIS SI LS LSS S S LSS

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

@2DbF0perator/remove show info 1:1

277 2 P72l

dummy

SSSLSSS S LS LSS LSS LIS LS LSS SIS 1SS

§1. show info on operator

E20F0perator/end draw 1:1

Zoc-end-duwlné

Pl L Ll Ll ldddd

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

V DFNonOpr

NULL <Root> object

\4

root
{ 0 0 20 0 location of its body

bodyRect
NULL

v

rootValue
FALSE

v

selected?

YA

textstring

Y%

dispstring

@)DFNonOpr

@ init_itself

init

5

terminals

11 Disconnect from
L— other objects.

disconnect

New Turtie Graphics

returns nothing

because DF Text

has no terminals;

called from terminal click?
of process click

® | draw itself
L‘- on the "sc-begin“ed
canvas

draw

Tue, Sep 1, 1992 2:50 PM

E2DFNon0pr/disconnect 1:2

SYJL AL LSS LSS LSLSLASS S SIS SIS SIS S

_NuLL
ccC

EZ20FNon0pr/disconnect 2:2

W

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

EADFNonDpr/init 1:1

YL LS LTSS LIS LS SIS S LSS LSS LSS 1SS

<self>

/

i\
N

/bodyRec /,

L e i 2 d

EADFNonOpr/init 1:1makedstrng 1:2

L LU L s

U s TR

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

@2DFNonOpr/init 1:1makedstrng 2:2

LIASSLSLILISSLILSSS LSS SIS/

SLLSSSS LSS ILS LSS SIS S LS SIS SS S s

EZ2DFNon0pr/draw 1:2

LSS STLS LSS SIS LSS L S S SIS ST

I draw root |
LILISSSI LSS A1/ S /S SIS SISI S/ IY 7.

@ZDFNon0pr/draw 2:2

(draw_root]]

SIS 1LSSALS LSS LS LIS/ L/ S SISV ST,

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

Z20FNon0pr/draw 1:2draw line 1:1

@Z2DFNonOpr/draw 1:2draw name 1:1

LU L L L i S

rect-to-int

SLLLSLILSL/ LSS LS SIS SISS SIS S LSSV

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

@Z2DFNonOpr/draw 1:2draw root 1:1

LSS AL LA LS LSS LS LSS 1SS S LSS S

j/draw

SLSL LSS LS LS LSS LSS SISV LSS S S s

@Z2DFNon0pr/draw 2:2draw line 1:1

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

Z0FNon0pr/draw 2:2draw name 1:1

YL S IS LSS IS LS LI L IS SSS /LSS SS T

rect-to-int

SIILI LSS SS LSS LSS AL /S LSSSS S SSS

ZZ2DFNon0pr/draw 2:2draw root 1:1

L L L L L s

SISSISILSS LSS 1SS SS LSS I SIS S LS SIS

E2DFNonOpr/draw 2:2draw line 1:1get turtle icon rect 1:1

SISSSLISSSS LSS 1L LSS LTSS 1SS TS/
®

2

SIS SSI LSS LS LSSV 1S 1SS/

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

J20FNonOpr/terminals 1:1

22272

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

V DFTurtle

NULL <Root> object

\

root
{ 0 0 20 0 location of its body

bodyRect
NULL

M

rootValue
FALSE

v

selected?

M

textstring

dispstring

v

@DFTurtle

@ returns turtie object

transiate

Iinit

New Turtie Graphics

Initialize DFTurtle
object.

Tue, Sep 1, 1992 2:52 PM

ZDFTurtle/translate 1:1

}IrootValuﬁ
<)

E20DFTurtle/init 1:1

JFTuntle

UL L L L L L il il

DFQLCanvas fq4ring turtle

menu item

SSSSSLSS VLSS S LSS 1SS LSS LIS LIS SIS s

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

Z2DFTurtle/init 1:1retrieve pTurtle 1:1

turtle 3

menu item (Fget turtle win ||

NN

canvas pad/

SSSSY LSS SIS IS S LIS I LSS IS/ S .

@Z0FTurtle/init 1:1retrieve pTurtie 1:1get turtle win 1:1

SIS SIS IS S AL LS SIS ILS SIS ISR IS
m pplicatio

§1. Turtle Display

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

V DFParameter

NULL

M

root
{ 0 0 20 O location of its body

<Root> object

bodyRect
NULL

M

rootValue
FALSE

\

selected?

M

textstring

\

dispstring
@)DFParameter

translate

returns the
integer value

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

eZ0FParameter/translate 1:1

TIYLS S LSS S 1SS LSS (SIS SIS ST

an integer parameter
so just return its value

{/rootValud

»
LLSLALSSS LSS SALS LSS/ SIS S 1SS LSS s

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

V OFPrimOpr

{ 20 0 28 0 <Root> object

root
{ 0 0 20 0 ‘location of its body

v

bodyRect
NULL

v

rootValue
FALSE

v

selected?

\
oprname

NULL list of <Terminal>
v --((termrect fromObjinstnum) ..

terminals

@)DFPrimOpr

5_1 input: DFOperator
Lj output: DFOperator

disconnec Jhis disconnects the object from others.

New Turtle Graphics Tuse, Sep 1, 1992 2:53 PM

EZ2DFPrim0pr/disconnect 1:1

LI ILSSS LSS S LSS 1SS LSS L LSS SSSSSS S/ 1S

7 set connectedTo

SI1LSSSTLSLILSL IS LSS LSS S SIS S LS

E2DFPrim0Opr/disconnect 1:1set connectedTo 1:2

LIS SIS LISSISLSSSL LSS LSS SIS ILS S/

Pl L L D

Z0FPrimOpr/disconnect 1:1set connectedTo 2:2

Q227D

SLISSLS IS LS LSS LSS LS SIS SSSSIS S S/ S

New Turtle Graphics Tue, Sep 1, 1992 2:53 PM

ZZ2DFPrim0pr/disconnect 1:1do root 1:2

LSS LSS LS LS L LIS LSS S LS LSS/

EZ0FPrim0pr/disconnect 1:1do root 2:2

Q22222 I

New Turtle Graphics Tue, Sep 1, 1992 2:53 PM

V DFUsrOpr

{ 20 0 28 0 <Root> object

root
{ 0 0 20 0 ‘location of its body

\4

bodyRect
NULL

M

rootValue
FALSE

\4

selected?

.v.
oprname

NULL list of <Terminal>
v --((termrect fromObjinstnum) ..

terminals

<¢

terminal count

<

user objects

New Turtle Graphics Tue, Sep 1, 1992 2:54 PM

V DFinputBar

NULL <Root> object

v

root
{ 0 0 20 0 _location of its body

bodyRect
NULL

M

rootValue
FALSE

\

selected?

(list of <Terminal>
v --((termrect fromObjinstnum) ..

input termnr

New Turtle Graphics

Tue, Sep 1, 1992 2:54 PM

V DFOutputBar

NUL <Root> object

\

root
{ 0 0 20 0 location of its body

bodyRect
NULL

N

rootValue
FALSE

£\

selected?

\
oprhname

() Vlist of <Terminal>
v --((termrect fromObjinstnum) ..

terminals
NULL

v

output terminals

New Turtle Graphics

Tue, Sep 1, 1992 2:54 PM

V DFEpaluator

@orEvaluater

given a list of DFObjects,
it returns those with roots

rijﬂ not connected, i.e. starting pts
!'__ for program execution

find starting pts

E translate/execute program

translate

@ DFEvaluator/find starting pts 1:1

list of DFObjects

(D
those with root not connected
(5]

@ZDFEvaluator/find starting pts 1:1those with root not connected 1:2

AASISS LS LS LIS S LSS S SIS S S 1SS ST
<DFObject>

F%nnectedT'

m

New Turtie Graphics Tue, Sep 1, 1992 2:54 PM

&A0FEvaluator/find starting pts 1:1those with root not connected 2:2

272D

<DFObject>

its root is connected
return nothing

122 11217 1IN LI

&ZDFEvaluator/translate 1:1

LIS LSSS LS LSSS LS LIS SIS IS LSS

<self> DFObject

28 /transiatel

SISSSSSLSLS LSS 1SS LSS 1SS SIS LSS/

New Turtle Graphics Tue, Sep 1, 1992 2:55 PM

[Booc91]

[CIL86]

[Clay88]

[CN88]

[Fraz87]

[Hare88]

[LGL88]

[Pape80]

[Shu88]
[TGS88a]
[TGS88b)

[TGS91]

LIST OF REFERENCES

Booch, G., Object-Oriented Design with Applications, The Benjamin/
Cummings Publishing Company, Inc., 1991.

Chang, S., Ichikawa, T., and Ligomenides, P., Visual Languages, Plenum
Press, New York and London, 1986.

Clayson, J., Visual Modeling with LOGO, The MIT Press Cambridge, MA.
1988.

Clements, D., and Natasi, B., “Social and cognitive interactions in
educationa! computer environments.” American Educational Research

Association Journal, 1988.

Frazier, M., “The effects of Logo on angle estimation skills on 7th graders.”
Unpublished Master’s thesis, Wichita State University, 1987.

Harel, 1., “Software design for learning mathematics: on learning Logo and
fractions through instructional software design.” MIT Epistemology and
Learning Center, Cambridge, MA. 1988.

Lehrer, R., Guckenberg, T., and Lee, O.,” Comparative study of the cognitive
consequences of inquiry-based Logo instruction.” Journal of Educational
Psychology, 1988.

Papert, S., Mindstorms; children, computers, and powerful ideas, Basic
Books, New York, 1980.

Shu, N., Visual Programming, Van Nostrand Reinhold Company, 1988.
The Gunakara Sun Systems, Prograph Tutorial, 1988.
The Gunakara Sun Systems, Prograph Reference,1988.

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

180

[YM90] Yoder, S., and Moursund, D., Logo PLUS for Educators: A Problem Solving
Approach and LogoWriter for Educators: A Problem Solving Approach.
ISTE, Eugene, OR, 1990.

181

[Bran87]

[Chan90]

[GF87]

[KL89]

[Laur90]

[Logo80)

[OS83]

BIBLIOGRAPHY

Brand, S., The Media Lab: Inventing the Future at MIT, Viking Penguin Inc.,
1987.

Chang, S., Principlcs of Visual Languages, F'rentice-Hall Inc., Englewood
Cliffs, NJ. 1990

Goldenberg, P., and Feureig, W., Exploring Language with Logo, The MIT
Press, Cambridge, MA. 1987.

Kim, W., and Lochovsky, F., Object-Oriented Concepts, Databases, and
Applicatiors, ACM PRESS, New York, New York, 1989.

Laurel, B., The Art of Human Comput<r Interface Design, Addison-Wesley
Publishing, 1990.

Logo Computer Systems Inc., Guide To Programming, 1980.

O’Shea, T., and Self, J., Learning and Teaching with Computers, Prentice-
Hall Inc., Englewood Cliffs, NJ. 1982.

182

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

C. Thomas Wu, Code CS/Wu
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

David A. Erickson, Code CS/Er
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

John Daley, LCDR, USN, Code CS/Da
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5002

Robert S. Lovejoy, LT/USN

9424 S. 83rd Ave.
Hickory Hills, 11 60457

183

[YM90] Yoder, S., and Moursund, D., Logo PLUS for Educators: A Problem Solving
Approach and LogoWriter for Educators: A Problem Solving Approach.
ISTE, Eugene, OR, 1990.

181

[Bran87]

[Chan90]

[GF87]

[KL.89]

[Laur90]

[Logo80]

[OS83]

BIBLIOGRAPHY

Brand, S., The Media Lab: Inventing the Future at MIT, Viking Penguin Inc.,
1987.

Chang, S., Principles of Visual Languages, Prentice-Hall Inc., Englewood
Cliffs, NJ. 1990

Goldenberg, P., and Feureig, W., Exploring Language with Logo, The MIT
Press, Cambridge, MA. 1987.

Kim, W., and Lochovsky, F., Object-Oriented Concepts, Databases, and
Applications, ACM PRESS, New York, New York, 1989.

Laurel, B., The Art of Human Computer Interface Design, Addison-Wesley
Publishing, 1990.

Logo Computer Systems Inc., Guide To Programming, 1980.

O’Shea, T., and Self, J., Learning and Teaching with Computers, Prentice-
Hall Inc., Englewood Cliffs, NJ. 1983.

182

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

C. Thomas Wu, Code CS/Wu
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

David A. Erickson, Code CS/Er
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

John Daley, LCDR, USN, Code CS/Da
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5002

Robert S. Lovejoy, LT/USN

9424 S. 83rd Ave.
Hickory Hills, I1 60457

183

